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1 Introduzione alla Meccanica Razionale

La Meccanica Razionale è la scienza che descrive i fenomeni naturali del moto dei corpi
in modo puramente analitico, senza ricorrere a rappresentazioni grafiche o intuitive. Questo
approccio rigoroso è stato reso possibile grazie allo sviluppo del calcolo differenziale, opera di
Leibniz e Newton. Nel contesto di questa trattazione, si ipotizzano corpi rigidi, trascurando
le deformazioni che i corpi reali subiscono sotto l’azione di forze.

L’obiettivo fondamentale è lo studio del moto, ovvero la descrizione di come la posizione di un
corpo evolve nel tempo. Per fare ciò, è necessario introdurre gli strumenti matematici dell’algebra
vettoriale, che costituiscono il linguaggio naturale della meccanica.

2 Algebra Vettoriale

2.1 Definizione e classificazione dei vettori

Un vettore è un ente geometrico definito da tre proprietà: modulo (o intensità), direzione e
verso. Geometricamente, può essere rappresentato come un segmento orientato. I vettori si
classificano in base al loro punto di applicazione:

• Vettore libero: non dipende dal punto di applicazione; due vettori liberi a⃗ e b⃗ sono
equivalenti, a⃗ ≡ b⃗, se hanno uguale modulo, direzione e verso.

• Vettore applicato: è definito dalla coppia (P, N⃗), dove P è il punto di applicazione e
N⃗ è il vettore stesso. Due vettori applicati a⃗ e b⃗ si dicono equipollenti se hanno stessa
intensità, stessa direzione e stesso verso, ma diverso punto di applicazione; in tal caso
a⃗ ̸= b⃗.

• Vettore di posizione: è un vettore applicato con punto di applicazione nell’origine
del sistema di riferimento. È intrinsecamente variante, poiché la sua rappresentazione
dipende dalla scelta del sistema di riferimento.

Figura 1: Due vettori di posizione x⃗p e x⃗′p che individuano lo stesso punto P rispetto a due
origini diverse O e O′.

Come illustrato in Figura 1, i vettori x⃗p e x⃗′p sono vettori di posizione relativi a due sistemi di
riferimento distinti. Sebbene il vettore posizione vari con il sistema di riferimento, la posizione
fisica del punto P che esso identifica rimane invariata.
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2.2 Operazioni fondamentali tra vettori

Le operazioni elementari definite sui vettori liberi sono le seguenti:

Prodotto vettore-scalare. Dato un vettore N⃗ e uno scalare α, il prodotto αN⃗ = u⃗ genera
un vettore con la stessa giacitura e direzione di N⃗ , modulo scalato di un fattore |α|, e verso
concorde a N⃗ se α > 0, discorde se α < 0.

Somma tra vettori. La somma N⃗ = a⃗+b⃗ si costruisce geometricamente unendo il punto finale
del primo addendo con il punto iniziale del secondo (regola del parallelogramma o punta-coda).

Figura 2: Rappresentazione grafica della somma vettoriale: il vettore N⃗ è la risultante di a⃗ e b⃗.

Vettore nullo. Il vettore nullo 0⃗ è associato a un segmento orientato di lunghezza nulla,
che collassa in un punto. Per ogni vettore a⃗ esiste un vettore opposto b⃗ tale che a⃗+ b⃗ = 0⃗; i
due vettori hanno stessa giacitura e intensità, ma verso opposto.

Interpretazione fisica. Il vettore nullo 0⃗ non coincide con lo zero scalare: esso rappresenta
l’assenza di una grandezza vettoriale, come ad esempio una velocità nulla o una forza risultante
nulla.

2.3 Prodotto scalare

Il prodotto scalare tra due vettori a⃗ e b⃗ è definito come:

a⃗ · b⃗ = ab cosα (1)

dove a = |⃗a| e b = |⃗b| sono i moduli dei vettori e α è l’angolo compreso tra essi. Il risultato è
uno scalare.

Figura 3: Interpretazione geometrica del prodotto scalare: a⃗ · b⃗ rappresenta la proiezione di b⃗ su
a⃗, moltiplicata per il modulo di a⃗.
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Interpretazione fisica. Il prodotto scalare misura quanto due vettori sono “allineati”. Se
α = 0 (vettori paralleli e concordi), il prodotto è massimo e pari a ab; se α = π/2 (vettori
ortogonali), il prodotto è nullo; se α = π (vettori antiparalleli), il prodotto è −ab.

Consideriamo il caso particolare in cui b⃗ sia un versore, ovvero un vettore di modulo unitario.
Se |⃗b| = 1, allora:

a⃗ · b⃗ = a cosα (2)

che rappresenta la componente di a⃗ lungo la direzione di b⃗.

Figura 4: Proiezione del vettore a⃗ lungo la direzione del versore b̂: la componente scalare è
a cosα.

Il versore b̂ associato a un vettore b⃗ è definito come:

b̂ =
b⃗

|⃗b|
(3)

Il vettore componente di a⃗ lungo b̂ è quindi:

(⃗a · b̂)b̂ (4)

che ha direzione di b̂ e modulo pari alla componente scalare a cosα.

2.4 Prodotto vettoriale

Il prodotto vettoriale tra due vettori u⃗ e N⃗ genera un nuovo vettore w⃗:

w⃗ = u⃗× N⃗ = u⃗ ∧ N⃗ (5)

Le proprietà di w⃗ sono:

• Intensità: |w⃗| = u ·N · sinα, dove α è l’angolo minore tra i due vettori.

• Direzione: ortogonale al piano individuato da u⃗ e N⃗ .

• Verso: determinato dalla regola della mano destra (o della vite destrorsa), tale che la
terna (u⃗, N⃗ , w⃗) sia una terna destra.

Interpretazione fisica. Il modulo del prodotto vettoriale rappresenta l’area del parallelo-
gramma costruito sui due vettori. Inoltre, il prodotto vettoriale è anticommutativo: u⃗× N⃗ =
−N⃗ × u⃗.
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3 Sistemi di riferimento e rappresentazione dei vettori

3.1 Basi ortonormali

Per descrivere quantitativamente i vettori, si introduce un sistema di riferimento cartesiano
costituito da un’origine O e da una base ortonormale {û1, û2, û3} di versori mutuamente
ortogonali.

Figura 5: Sistema di riferimento cartesiano tridimensionale con versori û1, û2, û3.

L’ortogonalità dei versori è espressa dal delta di Kronecker:

ûk · ûj = δkj =

{
1 se k = j

0 se k ̸= j
(6)

Per una terna destra, vale la relazione ciclica per il prodotto vettoriale:

û1 × û2 = û3, û2 × û3 = û1, û3 × û1 = û2 (7)

Figura 6: Relazione ciclica tra i versori di una terna destra.

3.2 Decomposizione di un vettore

Qualsiasi vettore N⃗ può essere espresso come combinazione lineare dei versori della base:

N⃗ =

3∑
k=1

Nkûk =

3∑
k=1

(N⃗ · ûk)ûk (8)

dove Nk = N⃗ · ûk è la componente di N⃗ lungo il k-esimo asse.

10
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Figura 7: Proiezione del vettore N⃗ sull’asse û1: la componente è N1 = N⃗ · û1.

Interpretazione fisica. Le componenti N1, N2, N3 rappresentano “quanto” del vettore N⃗ è
diretto lungo ciascun asse coordinato. La decomposizione permette di ridurre problemi vettoriali
a problemi scalari su ciascuna componente.

3.3 Invarianza del vettore e varianza delle componenti

È fondamentale distinguere tra il vettore fisico N⃗ , che è un ente geometrico invariante ri-
spetto al sistema di riferimento, e il vettore algebrico N , ovvero la matrice colonna delle sue
componenti:

N =

N1

N2

N3

 (9)

che è variante, poiché dipende dalla scelta degli assi.

Figura 8: Lo stesso vettore N⃗ rappresentato in un diverso sistema di riferimento {ĵ1, ĵ2, ĵ3} ha
componenti diverse.

Interpretazione fisica. Il vettore N⃗ rappresenta una grandezza fisica (velocità, forza, ecc.)
che esiste indipendentemente da come scegliamo di descriverla. Le componenti sono solo numeri
che dipendono dal “punto di vista” (sistema di riferimento) scelto dall’osservatore.
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3.4 Prodotto scalare in termini di componenti

Fissato un sistema di riferimento, il prodotto scalare tra due vettori N⃗ e u⃗ può essere calcolato
come:

N⃗ · u⃗ =

3∑
k=1

Nkuk = N1u1 +N2u2 +N3u3 (10)

In notazione matriciale:

N⃗ · u⃗ = NTu =
(
N1 N2 N3

)u1
u2
u3

 (11)

dove il risultato è uno scalare (matrice 1× 1).

4 Gradi di libertà e moto

4.1 Definizione di grado di libertà

Il grado di libertà di un punto libero in uno spazio è il numero di parametri scalari indipendenti
necessari per individuare univocamente la sua posizione. In uno spazio tridimensionale, un punto
libero possiede tre gradi di libertà: servono tre coordinate (ad esempio x, y, z) per specificare
la sua posizione.

Interpretazione fisica. I gradi di libertà rappresentano le “direzioni indipendenti” lungo cui
il punto può muoversi. Se si impongono vincoli (ad esempio, il punto deve giacere su una
superficie), il numero di gradi di libertà si riduce.

4.2 Equazione del moto

Il moto di un punto materiale è descritto dall’evoluzione temporale del suo vettore posizione:

x⃗P = x⃗P (t) (12)

dove t è l’unica variabile indipendente scalare.

Figura 9: Vettore posizione x⃗P (t) di un punto P in moto: la linea tratteggiata indica la traiet-
toria.

Per grandezze vettoriali variabili nel tempo, se i versori della base sono costanti, si ha:

N⃗(t) =

3∑
k=1

Nk(t)N̂k (13)
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Nel caso più generale in cui anche i versori varino nel tempo1:

N⃗(t) =

3∑
k=1

(
N⃗(t) · N̂k(t)

)
N̂k(t) (14)

5 Momento di un vettore applicato

5.1 Definizione di momento

Dato un vettore applicato (P, N⃗) e un punto O dello spazio (detto polo), si definisce momento
di N⃗ rispetto al polo O il vettore:

m⃗O = O⃗P × N⃗ (15)

dove O⃗P è il raggio vettore che congiunge il polo O al punto di applicazione P .

Figura 10: Momento del vettore N⃗ applicato in P rispetto al polo O: m⃗O = O⃗P × N⃗ .

Interpretazione fisica. Il momento misura la “tendenza” di un vettore applicato (tipicamente
una forza) a produrre una rotazione attorno al polo. Il modulo del momento è proporzionale
sia all’intensità del vettore sia alla distanza del polo dalla retta d’azione del vettore. Nel caso
di una forza, il momento si misura in N · m.

È importante osservare che:

• Il momento m⃗O è un vettore libero, mentre N⃗ è un vettore applicato.

• Cambiando il polo, il momento cambia (se N⃗ ̸= 0⃗).

5.2 Regola del trasporto del momento

Se si cambia polo da O a Ω, il momento si trasforma secondo la regola del trasporto:

m⃗Ω = Ω⃗P × N⃗ = (Ω⃗O + O⃗P )× N⃗ = Ω⃗O × N⃗ + O⃗P × N⃗ (16)

ovvero:
m⃗Ω = m⃗O + Ω⃗O × N⃗ (17)

1Questa situazione si presenta, ad esempio, quando si utilizzano coordinate curvilinee o sistemi di riferimento
non inerziali.
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Figura 11: Trasporto del momento da un polo O a un polo Ω.

Interpretazione fisica. La regola del trasporto mostra che il momento rispetto a un nuovo
polo Ω differisce da quello rispetto a O per un termine correttivo che dipende dalla posizione
relativa dei due poli e dal vettore N⃗ stesso.

Una conseguenza importante è che se la risultante di un sistema di vettori è nulla (R⃗ = 0⃗,
come nel caso di una coppia di forze uguali e opposte), il momento risultante non dipende
dalla scelta del polo.

5.3 Espressione del modulo del momento

Considerando il piano π in cui giacciono O⃗P e N⃗ , il momento ha direzione ortogonale a tale
piano. Detto γ l’angolo tra O⃗P e N⃗ , il modulo del momento è:

|m⃗O| = |O⃗P | · |N⃗ | · sin γ = b ·N (18)

dove b = |O⃗P | sin γ rappresenta la distanza (o braccio) del polo O dalla retta d’azione di N⃗ .

Figura 12: Interpretazione geometrica del braccio b: distanza del polo O dalla retta d’azione del
vettore N⃗ .

Interpretazione fisica. Il braccio b è la distanza perpendicolare tra il polo e la linea lungo cui
agisce il vettore. Maggiore è il braccio, maggiore è il momento a parità di intensità del vettore.
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Questo spiega perché, ad esempio, è più facile svitare un bullone usando una chiave con manico
lungo.

Un’importante proprietà è che se il polo O si muove lungo una retta parallela alla retta
d’azione di N⃗ , la distanza b e quindi il momento rimangono invariati.

6 Analisi dimensionale

L’analisi dimensionale consiste nel determinare le dimensioni fisiche di una grandezza, che
sono universali e invarianti, a differenza delle unità di misura, che sono convenzioni variabili.

Le grandezze fondamentali della meccanica sono:

• [M ] = massa

• [L] = lunghezza

• [T ] = tempo

A queste si aggiungono, per fenomeni elettromagnetici e termici:

• [Q] = carica elettrica

• [θ] = temperatura assoluta

L’omogeneità dimensionale richiede che in ogni equazione fisica valida, i due membri abbiano
le stesse dimensioni. Questa è una potente verifica della correttezza formale delle equazioni.

7 Momento di un vettore applicato: approfondimenti

Riprendiamo l’analisi del momento di un vettore applicato, concentrandoci sulla sua interpreta-
zione geometrica e sulle proprietà fondamentali che ne derivano.

7.1 Il braccio del momento

Consideriamo un vettore applicato (P, N⃗) e un polo O. Il momento m⃗O = O⃗P × N⃗ può essere
espresso in termini del braccio b, definito come la distanza tra il polo O e la retta d’azione del
vettore N⃗ .

Geometricamente, se γ è l’angolo tra O⃗P e N⃗ , si forma un triangolo rettangolo con ipotenusa
O⃗P , e il braccio risulta essere il cateto:

b = |O⃗P | sin γ (19)

Il braccio b è uno scalare, non un vettore: rappresenta la distanza punto-retta tra il polo O e
il punto H sulla retta d’azione di N⃗ .

Il modulo del momento può quindi essere scritto come:

|m⃗O| = |N⃗ | · b (20)

dove π̂ è il versore ortogonale al piano individuato da O⃗P e N⃗ .
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Interpretazione fisica. Il braccio b misura l’efficacia con cui il vettore N⃗ (ad esempio una
forza) può indurre una rotazione attorno al polo O. Maggiore è la distanza dalla retta d’azione,
maggiore è il momento a parità di intensità del vettore. È fondamentale tuttavia partire sempre
dalla definizione m⃗O = O⃗P × N⃗ per evitare errori di segno o direzione.

7.2 Prodotto vettoriale in componenti

Dato un sistema di riferimento con base ortonormale {û1, û2, û3}, un vettore generico v⃗ si scrive
come:

v⃗ =

3∑
k=1

vkûk con vk = v⃗ · ûk (21)

Il prodotto vettoriale tra due vettori v⃗ e u⃗ si calcola sviluppando:

v⃗ × u⃗ = (v1û1 + v2û2 + v3û3)× (u1û1 + u2û2 + u3û3) (22)

Utilizzando la relazione ciclica û1 × û2 = û3, û2 × û3 = û1, û3 × û1 = û2, e osservando che
ûi × ûi = 0⃗, il prodotto vettoriale si esprime mediante il determinante formale:

v⃗ × u⃗ =

∣∣∣∣∣∣
û1 û2 û3
v1 v2 v3
u1 u2 u3

∣∣∣∣∣∣ (23)

Sviluppando secondo Laplace lungo la prima riga, si ottengono le componenti del vettore risul-
tante W⃗ = v⃗ × u⃗:

W⃗ =

v2u3 − v3u2
v3u1 − v1u3
v1u2 − v2u1

 (24)

Interpretazione fisica. Il prodotto vettoriale non è commutativo: v⃗× u⃗ = −u⃗× v⃗. Questa
proprietà riflette il fatto che invertendo l’ordine dei fattori si inverte il verso del vettore risultante,
mantenendone modulo e direzione.

8 Sistemi di vettori applicati

8.1 Risultante e momento risultante

Consideriamo un sistema di N vettori applicati:

V = {(Pk, v⃗k), k = 1, . . . , N} (25)

dove ciascun vettore v⃗k è applicato in un punto Pk distinto.

Si definisce vettore risultante (o semplicemente risultante) la somma vettoriale:

R⃗ =

N∑
k=1

v⃗k (26)

La risultante R⃗ è un vettore libero: non ha un punto di applicazione naturale2.
2Tuttavia, nei calcoli pratici, la risultante viene spesso “applicata” in un punto specifico per determinare gli

effetti meccanici del sistema.
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Scelto un polo O, si definisce momento risultante rispetto a O:

M⃗O =

N∑
k=1

m⃗O
k =

N∑
k=1

O⃗P k × v⃗k (27)

Figura 13: Sistema di vettori applicati in punti P1, P2, . . . , PN . Il momento risultante si calcola
rispetto a un polo O scelto arbitrariamente, con un sistema di riferimento {û1, û2, û3}.

8.2 Regola del trasporto del momento risultante

Se si cambia polo da O a D, il momento risultante si trasforma secondo la regola del trasporto:

M⃗D =

N∑
k=1

D⃗P k × v⃗k =

N∑
k=1

(D⃗O + O⃗P k)× v⃗k (28)

Sviluppando e osservando che D⃗O non dipende dall’indice k:

M⃗D = M⃗O + D⃗O × R⃗ (29)

Figura 14: Trasporto del momento risultante dal polo O al polo D. La risultante R⃗ interviene
nella correzione del momento.
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Interpretazione fisica. Il momento risultante dipende dalla scelta del polo, ma la sua va-
riazione è completamente determinata dalla risultante R⃗ e dalla posizione relativa dei due poli.
Se R⃗ = 0⃗ (sistema equilibrato in traslazione), il momento risultante non dipende dal polo:
questa è la situazione tipica delle coppie di forze.

8.3 Invariante scalare del sistema

Proiettando il momento risultante sulla direzione della risultante, si ottiene una quantità che
non dipende dalla scelta del polo. Infatti:

M⃗D · R⃗ = (M⃗O + D⃗O × R⃗) · R⃗ = M⃗O · R⃗+ (D⃗O × R⃗) · R⃗ (30)

Il termine (D⃗O × R⃗) · R⃗ è identicamente nullo3, quindi:

M⃗D · R⃗ = M⃗O · R⃗ (31)

Il prodotto scalare M⃗O · R⃗ è detto invariante scalare (o trinomio invariante) del sistema di
vettori applicati. Esso rappresenta la componente del momento risultante lungo la direzione
della risultante.

Interpretazione fisica. L’invariante scalare misura la “parte” del momento che non può
essere eliminata cambiando polo. In termini meccanici, per un sistema di forze, esso quantifica
l’effetto torcente intrinseco del sistema, indipendente dal punto di osservazione.

8.4 Decomposizione del momento risultante

Il momento risultante M⃗O può essere scomposto in due componenti rispetto alla direzione della
risultante R⃗:

M⃗O = M⃗P
O + M⃗N

O (32)

dove:

• M⃗P
O è la componente parallela a R⃗, con modulo |M⃗P

O | = M⃗O · R̂

• M⃗N
O è la componente normale (ortogonale) a R⃗

Per la componente normale, esiste un punto Q tale che:

M⃗N
O = O⃗Q× R⃗ (33)

Questo punto Q giace su una retta q perpendicolare al piano individuato da M⃗N
O e R⃗.

Interpretazione fisica. La componente parallela M⃗P
O rappresenta l’effetto torcente “puro”

del sistema, che non può essere eliminato spostando il polo. La componente normale M⃗N
O invece

può essere annullata scegliendo opportunamente il polo.

3Il prodotto misto (⃗a× b⃗) · b⃗ = 0 per qualsiasi coppia di vettori, poiché a⃗× b⃗ è ortogonale a b⃗.
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Figura 15: Decomposizione del momento M⃗O nelle componenti M⃗P
O (parallela a R⃗) e M⃗N

O

(normale a R⃗).

9 Asse centrale di un sistema di vettori applicati

9.1 Definizione e significato

L’asse centrale di un sistema di vettori applicati è il luogo dei punti che, scelti come polo,
forniscono il momento risultante di minima intensità e parallelo alla risultante R⃗.

Per la dimostrazione, consideriamo:

• Un sistema V = {(Pi, W⃗i), 1 ≤ i ≤ N} di vettori applicati

• La risultante R⃗ ̸= 0⃗

• Il momento risultante M⃗O rispetto a un polo O, con M⃗O non parallelo a R⃗

9.2 Dimostrazione dell’esistenza dell’asse centrale

Scomponiamo M⃗O in componente parallela e normale alla risultante:

M⃗O = M⃗P
O + M⃗N

O (34)

Definiamo una retta q perpendicolare al piano individuato da M⃗N
O e R⃗ (e quindi q ⊥ R⃗). Su

questa retta scegliamo un punto Q tale che:

M⃗N
O = O⃗Q× R⃗ (35)

Ripetiamo il ragionamento per un secondo polo O′. La risultante R⃗ rimane invariata, e scom-
poniamo:

M⃗O′ = M⃗P
O′ + M⃗N

O′ (36)

Definiamo analogamente un punto Q′ tale che:

M⃗N
O′ = ⃗O′Q′ × R⃗ (37)
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Figura 16: Decomposizione del momento M⃗O rispetto alla risultante R⃗: M⃗P
O è parallela e M⃗N

O

è normale a R⃗.

Figura 17: La retta q passa per il punto Q ed è perpendicolare al piano contenente M⃗N
O e R⃗.

Dalla regola del trasporto e dall’invariante scalare:

M⃗O′ = M⃗O + O⃗′O × R⃗ (38)
M⃗P

O = M⃗P
O′ (39)

La seconda relazione segue dal fatto che M⃗O · R̂ = M⃗O′ · R̂ (invariante scalare).

Sostituendo le decomposizioni:

⃗O′Q′ × R⃗+ M⃗P
O′ = O⃗Q× R⃗+ M⃗P

O + O⃗′O × R⃗ (40)

Poiché M⃗P
O = M⃗P

O′ , questi termini si elidono:

⃗O′Q′ × R⃗ = O⃗Q× R⃗+ O⃗′O × R⃗ (41)

Riorganizzando e raggruppando:

( ⃗O′Q′ − O⃗Q− O⃗′O)× R⃗ = 0⃗ (42)

Riscrivendo i vettori posizione:

⃗O′Q′ − O⃗Q− O⃗′O = Q⃗′Q (43)

Quindi:
Q⃗′Q× R⃗ = 0⃗ (44)

Il risultato fondamentale è che:
Q⃗′Q ∥ R⃗ (45)
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Figura 18: Per il polo O′, la decomposizione del momento definisce analogamente un punto Q′

sulla retta q′.

Figura 19: Costruzione geometrica che mostra come i punti Q e Q′ giacciano sulla stessa retta
parallela a R⃗: l’asse centrale.

Interpretazione fisica. I punti Q e Q′, costruiti a partire da poli diversi, giacciono sempre
su una stessa retta α parallela alla risultante R⃗. Questa retta è l’asse centrale del sistema.

9.3 Proprietà dell’asse centrale

L’asse centrale α gode delle seguenti proprietà fondamentali:

1. Indipendenza dal polo. L’asse centrale non dipende dalla scelta del polo iniziale:
qualunque polo si scelga, la costruzione geometrica conduce alla stessa retta.

2. Momento minimo. Se si sceglie come polo un punto O appartenente all’asse centrale α,
allora:

M⃗O = M⃗P
O e M⃗N

O = 0⃗ (46)

Infatti, per O ∈ α e Q ∈ α, si ha O⃗Q ∥ R⃗, quindi:

M⃗N
O = O⃗Q× R⃗ = 0⃗ (47)

Interpretazione fisica. L’asse centrale rappresenta la posizione “ottimale” per analizzare il
sistema: scegliendo un polo su di esso, il momento risultante assume la sua intensità minima e
coincide con la componente parallela alla risultante. Questo semplifica notevolmente l’analisi di
sistemi di forze in meccanica.
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10 Momento assiale di un vettore applicato

Consideriamo un vettore R⃗ applicato in un punto P giacente su una retta r (retta d’azione), e
una seconda retta q passante per un polo O.

Figura 20: Vettore R⃗ applicato in P sulla retta d’azione r. Il momento rispetto al polo O è M⃗O.

Se si fa scorrere il vettore R⃗ lungo la sua retta d’azione r, il momento rispetto a O rimane
invariato. Se invece si sposta il polo lungo una retta q non parallela a r, il momento cambia
secondo la regola del trasporto:

M⃗O′ = M⃗O + O⃗′O × R⃗ (48)

Figura 21: Spostamento del polo da O a O′ lungo la retta q: il momento si modifica secondo la
regola del trasporto.

Sia ξ̂ il versore che definisce la direzione della retta q. Proiettando l’equazione del trasporto
lungo ξ̂:

M⃗O′ · ξ̂ = M⃗O · ξ̂ + (O⃗′O × R⃗) · ξ̂ (49)

Poiché O⃗′O è parallelo a ξ̂, il prodotto misto (O⃗′O × R⃗) · ξ̂ = 04. Quindi:

M⃗O · ξ̂ = M⃗O′ · ξ̂ (50)

Si definisce momento assiale di R⃗ rispetto alla retta q la quantità:

Mq = M⃗O · ξ̂ (51)

dove O è un qualsiasi punto di q.
4Il prodotto misto è nullo quando due dei tre vettori sono paralleli.
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Interpretazione fisica. Il momento assiale misura la tendenza del vettore applicato a pro-
durre una rotazione attorno all’asse q. Esso non dipende dalla posizione del polo lungo q, ma
solo dalla retta q stessa. Affinché il momento assiale sia non nullo, è necessario che la retta
d’azione r e l’asse q siano sghembi (non complanari e non paralleli).

Le componenti del momento rispetto a un polo indicano l’attitudine del vettore a indurre
rotazioni attorno ai rispettivi assi coordinati.

11 Proprietà dell’algebra vettoriale

Per completezza, riassumiamo le principali proprietà delle operazioni tra vettori.

11.1 Proprietà della somma

a⃗+ b⃗ = b⃗+ a⃗ (commutatività) (52)

a⃗+ (⃗b+ c⃗) = (⃗a+ b⃗) + c⃗ (associatività) (53)

α(⃗a+ b⃗) = αa⃗+ α⃗b (distributività) (54)
(α+ β)⃗a = αa⃗+ βa⃗ (distributività) (55)

11.2 Proprietà del prodotto scalare

a⃗ · b⃗ = b⃗ · a⃗ (commutatività) (56)

a⃗ · (⃗b+ c⃗) = a⃗ · b⃗+ a⃗ · c⃗ (distributività) (57)

11.3 Proprietà del prodotto vettoriale

a⃗× b⃗ = −b⃗× a⃗ (anticommutatività) (58)

a⃗× (⃗b+ c⃗) = a⃗× b⃗+ a⃗× c⃗ (distributività) (59)

k(⃗a× b⃗) = (ka⃗)× b⃗ = a⃗× (k⃗b) con k ∈ R (60)

11.4 Prodotto misto e identità notevoli

Il prodotto misto di tre vettori è definito come:

a⃗ · (⃗b× c⃗) = c⃗ · (⃗a× b⃗) = b⃗ · (c⃗× a⃗) (61)

e può essere calcolato come determinante:

a⃗ · (⃗b× c⃗) =

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ (62)
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Interpretazione fisica. Il valore assoluto del prodotto misto rappresenta il volume del paral-
lelepipedo costruito sui tre vettori. Il segno indica l’orientazione della terna.

Altre identità utili sono:

(⃗a× b⃗) · (c⃗× d⃗) = (⃗a · c⃗)(⃗b · d⃗)− (⃗a · d⃗)(⃗b · c⃗) (63)

a⃗× (⃗b× c⃗) = b⃗(⃗a · c⃗)− c⃗(⃗a · b⃗) (64)

(⃗a× b⃗)× c⃗ = b⃗(⃗a · c⃗)− a⃗(⃗b · c⃗) (65)

12 Derivate e integrali di vettori

12.1 Derivata di un vettore rispetto a una variabile scalare

Se il sistema di riferimento è fisso, ovvero i versori L̂k non dipendono dalla variabile indipendente
x:

da⃗(x)

dx
=

3∑
i=1

dai(x)

dx
L̂i (66)

Se invece anche i versori dipendono da x, si applica la regola del prodotto:

da⃗(x)

dx
=

3∑
i=1

dai(x)

dx
L̂i(x) +

3∑
i=1

ai(x)
dL̂i(x)

dx
(67)

Interpretazione fisica. Nel primo caso (riferimento fisso), la derivata del vettore dipende solo
dalla variazione delle componenti. Nel secondo caso (riferimento mobile), compare un termine
aggiuntivo dovuto alla rotazione del sistema di riferimento stesso.

12.2 Integrale di un vettore

Per un sistema di riferimento fisso:∫
a⃗(x) dx =

3∑
i=1

[∫
ai(x) dx

]
L̂i (68)

13 Analisi spettrale delle matrici

Lo studio delle proprietà spettrali delle matrici costituisce uno strumento fondamentale in mec-
canica razionale, dove molti problemi si riducono alla risoluzione di sistemi lineari o alla dia-
gonalizzazione di operatori. In particolare, la teoria degli autovalori e autovettori permette di
semplificare notevolmente l’analisi di sistemi meccanici complessi.

13.1 Autovalori e autovettori

Per spettro di una matrice si intende l’insieme dei suoi autovalori λ. Data una matrice quadrata
A di dimensione N ×N , si considera la relazione:

Az = c (69)
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dove z è un vettore colonna N × 1 e c è il vettore trasformato, anch’esso N × 1. La matrice A
agisce quindi come un operatore che trasforma il vettore z nel vettore c.

Un vettore z ̸= 0 si dice autovettore della matrice A se esiste uno scalare λ, detto autovalore
associato, tale che:

Az = λ z (70)

Interpretazione fisica. L’equazione (70) afferma che l’autovettore z, quando trasformato
dalla matrice A, produce un vettore parallelo a sé stesso, semplicemente scalato del fattore λ. In
termini componenti, se z = (z1, z2, z3)

T , allora λz = (λz1, λz2, λz3)
T : la direzione è preservata,

solo il modulo cambia.

13.2 Teoremi sulla diagonalizzazione

Per matrici simmetriche (A = AT ) valgono risultati fondamentali che ne garantiscono la diago-
nalizzabilità.

Teorema 1. Se A è una matrice simmetrica di ordine N , allora possiede N autovettori linear-
mente indipendenti e mutuamente ortogonali, corrispondenti a N autovalori (non necessaria-
mente distinti):

Az(k) = λk z
(k), k = 1, . . . , N (71)

La condizione di ortogonalità tra autovettori si esprime tramite il prodotto scalare. Dati due
vettori v⃗ e u⃗, essi sono ortogonali se:

v⃗ · u⃗ = 0 ⇔ vTu = 0 (72)

dove la seconda scrittura è la forma algebrica equivalente. In componenti:

vTu =

N∑
k=1

vkuk = v1u1 + v2u2 + · · ·+ vNuN (73)

Teorema 2. Per autovettori normalizzati vale la relazione di ortonormalità:

z(k)T z(j) = δkj =

{
0 se k ̸= j

1 se k = j
(74)

dove δkj è il delta di Kronecker.

Teorema 3. Se z(k) è autovettore associato a λk, allora anche αz(k) (con α scalare non nullo)
è autovettore associato allo stesso autovalore:

A(αz(k)) = λk(αz
(k)) (75)

Teorema spettrale. Se A è una matrice simmetrica di ordine N×N , allora è diagonalizzabile.
Inoltre, esiste una base ortonormale di RN formata dagli autovettori di A.
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13.3 Calcolo degli autovalori: equazione caratteristica

La relazione Az = λz può essere riscritta come:

(A− λI)z = 0 (76)

dove I è la matrice identità. Definendo Â = A− λI, si ottiene un sistema lineare omogeneo:
â11z1 + â12z2 + · · ·+ â1NzN = 0

â21z1 + â22z2 + · · ·+ â2NzN = 0
...
âN1z1 + âN2z2 + · · ·+ âNNzN = 0

(77)

Per il teorema di Rouché-Capelli, affinché il sistema ammetta soluzioni non banali, deve essere:

det(A− λI) = 0 (78)

Questa è l’equazione caratteristica del problema agli autovalori: un’equazione polinomiale
di grado N nella variabile λ, le cui radici sono gli autovalori della matrice.

Interpretazione fisica. L’equazione caratteristica fornisce i “modi naturali” del sistema de-
scritto dalla matrice A. In meccanica, questi corrispondono spesso alle frequenze naturali di
vibrazione o alle direzioni principali di deformazione.

13.4 Esempio di calcolo: matrice 2× 2

Consideriamo la matrice simmetrica:

A =

[
2 −1
−1 2

]
(79)

Si verifica immediatamente che AT = A, quindi la matrice è diagonalizzabile.

L’equazione caratteristica è:

det(A− λI) =

∣∣∣∣2− λ −1
−1 2− λ

∣∣∣∣ = (2− λ)2 − 1 = 0 (80)

Sviluppando:
λ2 − 4λ+ 3 = 0 ⇒ λ1 = 1, λ2 = 3 (81)

Caso λ1 = 1. Il sistema (A− λ1I)z
′ = 0 diventa:[

1 −1
−1 1

] [
z′1
z′2

]
= 0 ⇒ z′1 = z′2 (82)

L’autovettore (non normalizzato) è quindi:

z(1) =

(
1
1

)
(83)
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Caso λ2 = 3. Il sistema (A− λ2I)z
′′ = 0 diventa:[

−1 −1
−1 −1

] [
z′′1
z′′2

]
= 0 ⇒ z′′1 = −z′′2 (84)

L’autovettore è:
z(2) =

(
1
−1

)
(85)

Verifica dell’ortogonalità. Come previsto dal teorema, gli autovettori sono ortogonali:

z(1)T z(2) = (1, 1)

(
1
−1

)
= 1− 1 = 0 (86)

13.5 Normalizzazione degli autovettori

Per ottenere una base ortonormale, gli autovettori devono essere normalizzati. Dato un vettore
v⃗, il corrispondente versore è:

v̂ =
v⃗

∥v⃗∥
(87)

dove la norma (o modulo) è definita come:

∥v⃗∥ =

√√√√ n∑
i=1

v2i (88)

Per l’esempio precedente:

∥z(1)∥ =
√

12 + 12 =
√
2 ⇒ ẑ(1) =

1√
2

(
1
1

)
(89)

∥z(2)∥ =
√

12 + 12 =
√
2 ⇒ ẑ(2) =

1√
2

(
1
−1

)
(90)

Si verifica facilmente che ẑ(1)T ẑ(1) = 1, ẑ(2)T ẑ(2) = 1 e ẑ(1)T ẑ(2) = 0: gli autovettori normalizzati
formano una base ortonormale di R2.

13.6 Trasformazione di coordinate e diagonalizzazione

La diagonalizzazione di una matrice A si effettua tramite un cambio di coordinate. Definita la
matrice di trasformazione (o di passaggio) T avente come colonne gli autovettori di A:

T =
[
z(1) z(2) · · · z(N)

]
(91)

la matrice diagonalizzata è:
C = T TAT (92)

Quando gli autovettori sono ortonormali, la matrice T è ortogonale, ovvero soddisfa:

T TT = I ⇔ T−1 = T T (93)
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Interpretazione fisica. Una matrice ortogonale rappresenta una rotazione (o una riflessione)
nello spazio: il passaggio da un sistema di coordinate cartesiane ortogonali a un altro avviene
senza deformazioni, preservando angoli e distanze.

Per l’esempio precedente, con autovettori non normalizzati:

T =

[
1 1
1 −1

]
(94)

Il calcolo esplicito fornisce:

T TAT =

[
1 1
1 −1

] [
2 −1
−1 2

] [
1 1
1 −1

]
=

[
2 0
0 6

]
= 2

[
1 0
0 3

]
(95)

La matrice C è diagonale e i suoi elementi sulla diagonale principale sono proporzionali agli
autovalori λ1 = 1 e λ2 = 35.

Risultato fondamentale. Se A è simmetrica, essa possiede N autovettori mutuamente or-
togonali e linearmente indipendenti che costituiscono una base dello spazio N -dimensionale. In
questa base, la matrice A assume forma diagonale con gli autovalori sulla diagonale principale.

13.7 Applicazione: risoluzione di sistemi lineari

La diagonalizzazione semplifica la risoluzione di sistemi lineari non omogenei. Dato il sistema:

Ax = b (96)

si introduce il cambio di variabile y = T Tx, che trasforma il sistema in:

Λ y = c (97)

dove Λ è la matrice diagonale degli autovalori e c = T T b. Essendo Λ diagonale, il sistema si
disaccoppia in N equazioni scalari indipendenti:

λkyk = ck ⇒ yk =
ck
λk

, k = 1, . . . , N (98)

14 Cinematica del punto materiale

Il moto è l’analisi dell’evoluzione temporale delle posizioni occupate dagli elementi meccanici:
punti materiali, sistemi di punti, corpi rigidi. Si tratta quindi di studiare il vettore posizione
nella sua variazione nel tempo.

14.1 Vettore posizione, traiettoria e spostamento

Il vettore posizione x⃗(t) descrive la posizione di un punto rispetto a un’origine fissata, in
funzione del tempo t. La traiettoria è il luogo geometrico dei punti occupati dall’elemento
durante il moto, al variare di t.

5Il fattore 2 che compare è dovuto al fatto che gli autovettori non sono normalizzati. Utilizzando gli autovettori
normalizzati si otterrebbe direttamente la matrice diagonale degli autovalori.
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Figura 22: Definizione del vettore spostamento ∆x⃗ come differenza tra i vettori posizione x⃗(t+
∆t) e x⃗(t) in istanti successivi.

Il vettore spostamento è definito come la differenza tra due vettori posizione in istanti
successivi:

∆x⃗ = x⃗(t+∆t)− x⃗(t) (99)

Si tratta di un vettore invariante rispetto al sistema di riferimento6.

14.2 Velocità e accelerazione

La velocità istantanea è definita come il limite del rapporto incrementale dello spostamento:

v⃗(t) = lim
∆t→0

x⃗(t+∆t)− x⃗(t)

∆t
=

dx⃗(t)

dt
(100)

L’accelerazione è la derivata temporale della velocità:

a⃗(t) =
dv⃗(t)

dt
=

d2x⃗(t)

dt2
(101)

Interpretazione fisica. La velocità rappresenta il tasso di variazione della posizione: indica
quanto rapidamente e in quale direzione il punto si muove. L’accelerazione misura il tasso di
variazione della velocità: indica come cambia il moto nel tempo, sia in intensità che in direzione.

15 Equazioni differenziali in meccanica

Le relazioni che governano i fenomeni meccanici sono tipicamente di natura differenziale: es-
se collegano cause (forze) ed effetti (moto) attraverso equazioni che coinvolgono una funzione
incognita e le sue derivate.

15.1 Classificazione delle equazioni differenziali

Nel contesto della meccanica dei corpi rigidi, si considerano equazioni differenziali con le seguenti
caratteristiche:

6Lo spostamento, essendo differenza di vettori posizione, non dipende dalla scelta dell’origine del sistema di
riferimento.
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• Ordine: al massimo 2 per corpi rigidi (ordini superiori per corpi deformabili)

• Lineari: la funzione incognita e le sue derivate compaiono con esponente unitario

• Ordinarie: la funzione incognita dipende da una sola variabile (il tempo)

• A coefficienti costanti: i coefficienti non dipendono dalla variabile indipendente

• Omogenee o non omogenee: a seconda che il termine noto sia nullo o meno

Un’equazione differenziale lineare di ordine N non omogenea si scrive nella forma generale:

L[u(t)] = f(t) (102)

dove l’operatore differenziale lineare L è definito come:

L =

N∑
k=0

ak
dk

dtk
(103)

e f(t) è la forzante, una funzione nota che rende l’equazione non omogenea.

15.2 Struttura della soluzione generale

La linearità dell’operatore L implica che la soluzione generale dell’equazione non omogenea si
costruisce come:

u(t) = uGO(t) + uPN (t) (104)

dove:

• uGO(t) è la soluzione generale dell’equazione omogenea associata, ovvero l’insieme
di tutte le funzioni che soddisfano L[u] = 0

• uPN (t) è una soluzione particolare dell’equazione non omogenea, ovvero una qual-
siasi funzione che soddisfa L[u] = f(t)

Interpretazione fisica. La soluzione dell’omogenea rappresenta la risposta “libera” del si-
stema, dipendente dalle condizioni iniziali. La soluzione particolare rappresenta la risposta
“forzata”, determinata dalla forzante esterna. Il moto complessivo è la sovrapposizione di questi
due contributi.

15.3 Soluzione dell’equazione omogenea

Per l’equazione omogenea:

aN
dNu

dtN
+ aN−1

dN−1u

dtN−1
+ · · ·+ a1

du

dt
+ a0u = 0 (105)

si cerca una soluzione nella forma esponenziale:

u(t) = Ceδt (106)

Sostituendo nell’equazione e osservando che dk

dtk
(Ceδt) = δkCeδt, si ottiene:

Ceδt(aNδN + aN−1δ
N−1 + · · ·+ a1δ + a0) = 0 (107)
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Escludendo la soluzione banale C = 0, si ricava l’equazione caratteristica:

aNδN + aN−1δ
N−1 + · · ·+ a1δ + a0 = 0 (108)

Le N radici δ1, δ2, . . . , δN di questa equazione polinomiale determinano la soluzione generale:

uGO(t) =

N∑
j=1

Cje
δjt (109)

Le N costanti Cj vengono determinate imponendo N condizioni iniziali sulla funzione e le sue
derivate in un istante t∗:

u(t∗) = u∗,
du

dt

∣∣∣∣
t∗
= u′∗, . . . ,

dN−1u

dtN−1

∣∣∣∣
t∗
= u(N−1)∗ (110)

15.4 Equazione del secondo ordine: caso fondamentale

Consideriamo l’equazione omogenea del secondo ordine con coefficiente intermedio nullo:

a
d2u

dt2
+ b u = 0 (111)

che può essere riscritta come:
d2u

dt2
= − b

a
u (112)

La soluzione è una funzione che, derivata due volte, restituisce sé stessa moltiplicata per una
costante negativa.

Ponendo u(t) = Ceγt e sostituendo, si ottiene l’equazione caratteristica:

γ2 +
b

a
= 0 ⇒ γ1,2 = ±

√
− b

a
(113)

Caso A: radici reali distinte. Se − b
a > 0, le radici sono reali e opposte. La soluzione è:

u(t) = C1e
γ1t + C2e

γ2t (114)

Date le condizioni iniziali u(0) = u0 e u′(0) = u′0, si ottiene il sistema:{
C1 + C2 = u0

γ1C1 + γ2C2 = u′0
(115)

Caso B: radici immaginarie coniugate. Se − b
a < 0, le radici sono immaginarie pure:

γ1,2 = ±jω, con ω =

√
b

a
(116)

dove ω è la pulsazione del moto oscillatorio, legata al periodo T e alla frequenza f dalla
relazione ω = 2π

T = 2πf .

Utilizzando le formule di Eulero (e±jα = cosα± j sinα), la soluzione reale si scrive:

u(t) = A cos(ωt) +B sin(ωt) (117)
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Figura 23: Andamento tipico della soluzione nel caso di radici reali: il comportamento dipende
dalle costanti C1 e C2 determinate dalle condizioni iniziali.

Figura 24: Linearizzazione di una funzione non lineare: all’interno di un opportuno intervallo,
la funzione può essere approssimata dalla retta tangente.

Interpretazione fisica. Il caso di radici immaginarie corrisponde a un moto oscillatorio
o vibratorio. Questo tipo di equazione governa qualsiasi fenomeno naturale caratterizzato da
oscillazioni periodiche: sistemi massa-molla, pendoli, circuiti elettrici LC, e molti altri.

15.5 Applicazione: sistema massa-molla

Un esempio fondamentale di sistema governato dall’equazione (111) è il sistema massa-molla
ideale, costituito da una massa M collegata a una molla lineare di rigidezza k.

16 Applicazione: il sistema massa-molla

Il sistema massa-molla rappresenta uno dei modelli fondamentali della meccanica, in quanto
descrive il comportamento oscillatorio che si riscontra in numerosi fenomeni fisici. La sua analisi
permette di comprendere i concetti essenziali delle vibrazioni meccaniche.

16.1 Formulazione del problema

Consideriamo una massa M vincolata a muoversi lungo una retta orizzontale, collegata a una
molla di rigidezza K. Il sistema possiede un unico grado di libertà, rappresentato dalla
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Figura 25: Sistema massa-molla: una massa M è collegata a una molla di rigidezza k. La
posizione x0 indica la configurazione di equilibrio.

posizione x della massa lungo l’asse del moto. Tutte le relazioni vettoriali devono quindi essere
proiettate lungo questa direzione.

Figura 26: Sistema massa-molla: la molla ha lunghezza a riposo l0 e lunghezza istantanea l. Il
versore P̂Q indica la direzione dell’asse della molla.

La relazione fondamentale della dinamica è F⃗ = ma⃗. L’accelerazione, essendo il moto unidi-
mensionale lungo l’asse x, si riduce a:

a⃗ =
d2x⃗

dt2
= ẍ î (118)

dove î è il versore dell’asse x, costante nel tempo.

La forza elastica esercitata dalla molla è data dalla legge di Hooke:

F⃗e = −K(l − l0) P̂Q (119)

dove K è la costante elastica (o rigidezza) della molla, l è la lunghezza istantanea, l0 è la
lunghezza a riposo, e P̂Q è il versore diretto lungo l’asse della molla. Il segno negativo indica
che la forza si oppone all’allungamento.

Poiché P̂Q coincide con î, proiettando lungo l’asse del moto si ottiene:

F⃗e = −K(x− x0) î (120)

dove x0 rappresenta la posizione di equilibrio (lunghezza a riposo).
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16.2 Equazione del moto

Applicando il bilancio delle forze mẍ î = −K(x− x0) î, si ottiene l’equazione scalare:

mẍ+K(x− x0) = 0 (121)

Introducendo la variabile u = x− x0 (spostamento dalla posizione di equilibrio), per cui ü = ẍ,
l’equazione diventa:

mü+Ku = 0 ⇒ ü+
K

m
u = 0 (122)

L’equazione caratteristica associata è:

γ2 +
K

m
= 0 ⇒ γ1,2 = ±

√
−K

m
= ±jω (123)

dove si è definita la pulsazione naturale:

ω =

√
K

m
(124)

Figura 27: Derivazione delle radici dell’equazione caratteristica: poiché K > 0 e m > 0, il
radicando è negativo e le radici sono immaginarie pure ±jω.

Interpretazione fisica. Le radici immaginarie pure indicano che il sistema oscilla indefinita-
mente senza smorzamento. La pulsazione ω determina la rapidità delle oscillazioni: maggiore è
la rigidezza K o minore è la massa m, più elevata è la frequenza di oscillazione.

16.3 Soluzione generale e condizioni iniziali

La soluzione generale dell’equazione omogenea è:

u(t) = C1e
−jωt + C2e

jωt (125)

Utilizzando le formule di Eulero e±jα = cosα± j sinα, si ottiene la forma reale:

u(t) = C1[cos(ωt)− j sin(ωt)] + C2[cos(ωt) + j sin(ωt)]

= (C1 + C2) cos(ωt) + j(C2 − C1) sin(ωt)

= a cos(ωt) + b sin(ωt) (126)
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Per determinare le costanti a e b, si impongono le condizioni iniziali all’istante t = 0:{
u(0) = u0 (posizione iniziale)
u̇(0) = u̇0 (velocità iniziale)

(127)

Sostituendo in u(t) e nella sua derivata u̇(t) = −aω sin(ωt) + bω cos(ωt):u0 = a

u̇0 = bω
⇒

a = u0

b =
u̇0
ω

(128)

Il risultato fondamentale è la soluzione completa:

u(t) = u0 cos(ωt) +
u̇0
ω

sin(ωt) (129)

Figura 28: La soluzione è somma di due funzioni sinusoidali: u0 cos(ωt) (nero) e u̇0
ω sin(ωt)

(rosso), sfasate di π/2 tra loro.

Interpretazione fisica. La soluzione è la sovrapposizione di due oscillazioni:

• Il termine in coseno dipende dalla posizione iniziale u0: se il sistema parte da una
posizione spostata con velocità nulla (u̇0 = 0), si ha u(t) = u0 cos(ωt).

• Il termine in seno dipende dalla velocità iniziale u̇0: se il sistema parte dalla posizione
di equilibrio con una velocità iniziale (u0 = 0), si ha u(t) = u̇0

ω sin(ωt).

Le due componenti sono sfasate di π/2 e hanno lo stesso periodo T = 2π
ω .

16.4 Forma in ampiezza e fase

La soluzione (129) può essere riscritta in forma compatta introducendo l’ampiezza A e la fase
φ. Ponendo: u0 = A cosφ

u̇0
ω

= −A sinφ
(130)

si ottiene:

u(t) = A cosφ cos(ωt)−A sinφ sin(ωt) = A[cosφ cos(ωt)− sinφ sin(ωt)] (131)

Applicando la formula di addizione del coseno cos(α+ β) = cosα cosβ − sinα sinβ:

u(t) = A cos(ωt+ φ) (132)
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Interpretazione fisica. L’oscillazione armonica è completamente caratterizzata da tre para-
metri: l’ampiezza A (massimo spostamento), la pulsazione ω (legata al periodo) e la fase φ (che
determina l’istante iniziale del ciclo).

17 Classificazione delle soluzioni per equazioni del secondo or-
dine

Consideriamo l’equazione differenziale omogenea generale del secondo ordine a coefficienti co-
stanti:

α2ẍ+ α1ẋ+ α0x = 0 (133)

L’equazione caratteristica associata è:

α2δ
2 + α1δ + α0 = 0 (134)

le cui radici sono:

δ1,2 =
−α1 ±

√
α2
1 − 4α0α2

2α2
(135)

La natura delle soluzioni dipende dal segno del discriminante ∆ = α2
1 − 4α0α2.

17.1 Caso 1: Radici reali e distinte (∆ > 0)

Quando α2
1 > 4α0α2, le radici sono reali e distinte. La soluzione generale è:

x(t) = C1e
δ1t + C2e

δ2t (136)

Il comportamento asintotico dipende dal segno delle radici:

Sottocaso α1 > 0: radici negative (δ1 < 0, δ2 < 0). La soluzione decade esponenzialmente
verso zero per t → ∞. Questo corrisponde a un sistema smorzato che tende asintoticamente
all’equilibrio.

Figura 29: Andamento della soluzione con radici reali negative: il sistema decade esponenzial-
mente verso l’equilibrio.

Sottocaso α1 < 0: radici positive (δ1 > 0, δ2 > 0). La soluzione cresce esponenzialmente
per t → ∞. Il sistema è instabile.
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Figura 30: Andamento della soluzione con radici reali positive: il sistema diverge esponenzial-
mente.

Interpretazione fisica. Il coefficiente α1, associato alla derivata prima (velocità), rappresenta
lo smorzamento viscoso: se α1 > 0, il sistema dissipa energia e tende all’equilibrio; se α1 < 0,
il sistema accumula energia e diverge.

17.2 Caso 2: Radici coincidenti (∆ = 0)

Quando α2
1 = 4α0α2, si ha un’unica radice con molteplicità algebrica 2:

δ = − α1

2α2
(137)

La soluzione generale assume la forma7:

x(t) = C1e
δt + C2 t e

δt = (C1 + C2t)e
δt (138)

Anche in questo caso:

• Se α1 > 0 ⇒ δ < 0: la soluzione decade verso zero (smorzamento critico).

• Se α1 < 0 ⇒ δ > 0: la soluzione diverge.

17.3 Caso 3: Radici complesse coniugate (∆ < 0)

Quando α2
1 < 4α0α2, le radici sono complesse coniugate:

δ1,2 = β ± jω (139)

dove β = − α1
2α2

è la parte reale e ω =

√
4α0α2−α2

1

2α2
è la parte immaginaria8.

La soluzione generale è:
x(t) = eβt[A cos(ωt) +B sin(ωt)] (140)

Il comportamento dipende dal segno di β:

Sottocaso α1 > 0 ⇒ β < 0: oscillazioni smorzate. L’ampiezza delle oscillazioni decresce
esponenzialmente. Il sistema tende asintoticamente all’equilibrio oscillando.

Sottocaso α1 < 0 ⇒ β > 0: oscillazioni amplificate. L’ampiezza delle oscillazioni cresce
esponenzialmente. Il sistema è instabile.

7Per radici con molteplicità n, la soluzione include termini del tipo tkeδt con k = 0, 1, . . . , n− 1.
8Affinché ∆ < 0 con α2 > 0, è necessario che α0 > 0.
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Figura 31: Oscillazioni smorzate (β < 0, sinistra) e amplificate (β > 0, destra). L’inviluppo
esponenziale eβt modula l’ampiezza dell’oscillazione.

Interpretazione fisica. Il fattore eβt rappresenta l’inviluppo delle oscillazioni: determina se
l’ampiezza cresce o decresce nel tempo, mentre i termini trigonometrici descrivono l’oscillazione
periodica alla pulsazione ω.

18 Equazioni differenziali non omogenee

18.1 Struttura della soluzione

Una generica equazione differenziale lineare non omogenea di ordine N si scrive:

L[x(t)] =
N∑
k=0

αk
dkx

dtk
= f(t) (141)

dove f(t) è il termine forzante.

La soluzione generale è la somma:

x(t) = xGO(t) + xPN (t) (142)

dove xGO(t) è la soluzione generale dell’omogenea associata e xPN (t) è una soluzione particolare
della non omogenea.

18.2 Forma generale della forzante e della soluzione particolare

Per forzanti della forma:

f(t) = eηt [PM (t) cos(δt) + PN (t) sin(δt)] (143)

dove PM (t) e PN (t) sono polinomi di grado M e N rispettivamente, si cerca una soluzione
particolare del tipo:

xPN (t) = ts · eηt [A(t) cos(δt) +B(t) sin(δt)] (144)

dove:

• A(t) e B(t) sono polinomi di grado r = max(M,N)

• s è la molteplicità algebrica di η±jδ come radice dell’equazione caratteristica dell’omogenea
associata

Le costanti dei polinomi A(t) e B(t) si determinano sostituendo xPN (t) nell’equazione differen-
ziale e imponendo l’uguaglianza con f(t).
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18.3 Applicazione: oscillatore forzato senza smorzamento

Consideriamo l’equazione:
α2ẍ+ α0x = F cos(Ωt) (145)

dove f(t) = F cos(Ωt) è una forzante armonica di ampiezza F e pulsazione Ω.

Soluzione dell’omogenea. L’equazione caratteristica α2γ
2 + α0 = 0 fornisce:

γ1,2 = ±j

√
α0

α2
= ±jω0 (146)

dove ω0 =
√

α0
α2

è la pulsazione naturale del sistema.

Soluzione particolare. Consideriamo il caso non risonante: Ω ̸= ω0, cioè la pulsazione
della forzante è diversa dalla pulsazione naturale9.

Poiché η = 0 e jΩ non è radice dell’equazione caratteristica (essendo le radici ±jω0 con ω0 ̸= Ω),
si cerca:

xPN (t) = A cos(Ωt) +B sin(Ωt) (147)

Calcolando le derivate:

ẋPN (t) = Ω[−A sin(Ωt) +B cos(Ωt)] (148)
ẍPN (t) = −Ω2[A cos(Ωt) +B sin(Ωt)] (149)

Sostituendo nell’equazione (145):

−α2Ω
2[A cos(Ωt) +B sin(Ωt)] + α0[A cos(Ωt) +B sin(Ωt)] = F cos(Ωt) (150)

Raccogliendo:
(α0 − α2Ω

2)[A cos(Ωt) +B sin(Ωt)] = F cos(Ωt) (151)

Confrontando i coefficienti delle funzioni trigonometriche:{
A(α0 − α2Ω

2) = F

B(α0 − α2Ω
2) = 0

(152)

Da cui:
B = 0, A =

F

α0 − α2Ω2
(153)

La soluzione particolare dell’equazione non omogenea, ottenuta determinando i coefficienti A e
B, risulta quindi:

xPN (t) =
F

α0 − α2Ω2
cos(Ωt) (154)

Moltiplicando numeratore e denominatore per 1/α2 e ricordando che ω2 = α0/α2, si ottiene la
forma equivalente:

xPN (t) =
F/α2

ω2 − Ω2
cos(Ωt) (155)

9Il caso risonante Ω = ω0 richiede un trattamento separato e porta a soluzioni con ampiezza che cresce
linearmente nel tempo.
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La soluzione generale completa è quindi:

x(t) = xGO(t) + xPN (t) = C1e
δ1t + C2e

δ2t +
F

α0 − α2Ω2
cos(Ωt) (156)

Per determinare le costanti C1 e C2 è necessario imporre le condizioni iniziali x(0) = x0 e
ẋ(0) = ẋ0. A tal fine si deriva l’espressione di x(t):

ẋ(t) = δ1C1e
δ1t + δ2C2e

δ2t − ΩF

α0 − α2Ω2
sin(Ωt) (157)

Imponendo t = 0 in entrambe le espressioni e risolvendo il sistema risultante si ottengono C1 e
C2.

19 Oscillatore semplice forzato

Il sistema massa-molla sottoposto a una forzante esterna rappresenta uno dei modelli fondamen-
tali per lo studio delle vibrazioni forzate. L’analisi di questo sistema permette di comprendere
fenomeni cruciali come la risonanza.

19.1 Formulazione del problema

Consideriamo una massa m collegata a una molla di rigidezza K, sottoposta a una forza esterna
di tipo armonico F cos(Ωt), dove F è l’ampiezza della forzante e Ω è la sua pulsazione.

Figura 32: Sistema massa-molla forzato: una massa m collegata a una molla di costante elastica
K è soggetta a una forza esterna armonica. Lo spostamento x è misurato lungo l’asse orizzontale.

Le ipotesi del modello sono:

• assenza di smorzamento;

• assenza di sfasamento nella forzante;

• la pulsazione Ω della forzante è costante nel tempo.

L’equazione del moto è:
mẍ+Kx = F cos(Ωt) (158)

Dividendo per m e introducendo la pulsazione naturale ω =
√

K/m:

ẍ+ ω2x =
F

m
cos(Ωt) (159)

40



NOTESTOBOOK

19.2 Caso non risonante: Ω ̸= ω

Soluzione dell’omogenea. L’equazione caratteristica γ2 + ω2 = 0 fornisce radici complesse
coniugate γ1,2 = ±jω. La soluzione generale dell’omogenea è:

xGO(t) = A cos(ωt) +B sin(ωt) (160)

Soluzione particolare. Poiché ±jΩ non coincide con le radici dell’omogenea (essendo Ω ̸= ω),
si cerca una soluzione particolare della forma:

xPN (t) = C cos(Ωt) +D sin(Ωt) (161)

Calcolando le derivate e sostituendo nell’equazione differenziale:

ẋPN (t) = −ΩC sin(Ωt) + ΩD cos(Ωt) (162)
ẍPN (t) = −Ω2C cos(Ωt)− Ω2D sin(Ωt) (163)

Sostituendo in (159):

(ω2 − Ω2)[C cos(Ωt) +D sin(Ωt)] =
F

m
cos(Ωt) (164)

Confrontando i coefficienti: 
D = 0

C =
F/m

ω2 − Ω2

(165)

La soluzione particolare è quindi:

xPN (t) =
F/m

ω2 − Ω2
cos(Ωt) (166)

Soluzione globale. Combinando omogenea e particolare:

x(t) = A cos(ωt) +B sin(ωt) +
F/m

ω2 − Ω2
cos(Ωt) (167)

Imponendo le condizioni iniziali x(0) = x0 e ẋ(0) = ẋ0:x0 = A+
F/m

ω2 − Ω2

ẋ0 = ωB

⇒


A = x0 −

F/m

ω2 − Ω2

B =
ẋ0
ω

(168)

Il risultato fondamentale per l’oscillatore semplice forzato nel caso non risonante è:

x(t) = x0 cos(ωt) +
ẋ0
ω

sin(ωt) +
F/m

ω2 − Ω2
[cos(Ωt)− cos(ωt)] (169)

Interpretazione fisica. La soluzione (169) è composta da tre contributi:

• I primi due termini oscillano alla pulsazione naturale ω =
√

K/m, che dipende esclusiva-
mente dalle caratteristiche del sistema (massa e rigidezza).

• Il terzo termine contiene sia la pulsazione della forzante Ω sia quella naturale ω: rappre-
senta la risposta forzata del sistema.
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19.3 Caso risonante: Ω = ω

Quando la pulsazione della forzante coincide con quella naturale del sistema (Ω = ω), si verifica il
fenomeno della risonanza. In questo caso, ±jΩ = ±jω sono radici dell’equazione caratteristica
dell’omogenea, e la forma della soluzione particolare deve essere modificata.

Soluzione particolare. Si cerca una soluzione del tipo:

xPN (t) = t[C cos(ωt) +D sin(ωt)] (170)

Calcolando le derivate:

ẋPN (t) = [C cos(ωt) +D sin(ωt)] + t[−ωC sin(ωt) + ωD cos(ωt)] (171)
ẍPN (t) = 2ω[D cos(ωt)− C sin(ωt)]− tω2[C cos(ωt) +D sin(ωt)] (172)

Sostituendo nell’equazione differenziale ẍ+ ω2x = (F/m) cos(ωt):

2ω[D cos(ωt)− C sin(ωt)] =
F

m
cos(ωt) (173)

Confrontando i coefficienti: C = 0

D =
F

2mω

(174)

La soluzione particolare è:
xPN (t) =

F

2mω
t sin(ωt) (175)

Soluzione globale. Combinando con l’omogenea e applicando le condizioni iniziali:

x(t) = x0 cos(ωt) +
ẋ0
ω

sin(ωt) +
Ft

2mω
sin(ωt) (176)

Verifica tramite il teorema di de l’Hôpital. Il risultato (176) può essere ottenuto anche
calcolando il limite della soluzione (169) per Ω → ω. Il termine problematico è:

lim
Ω→ω

F/m

ω2 − Ω2
[cos(Ωt)− cos(ωt)] (177)

Questo limite si presenta nella forma indeterminata 0/0. Applicando il teorema di de l’Hôpital,
derivando rispetto a Ω:

lim
Ω→ω

−(F/m)t sin(Ωt)

−2Ω
=

Ft

2ωm
sin(ωt) (178)

che conferma il risultato (175).

Interpretazione fisica. In condizioni di risonanza, il termine legato alla forzante ha ampiezza
che cresce linearmente con il tempo t. Il coefficiente angolare dell’inviluppo dipende da F , m
e ω. Indipendentemente dalle condizioni iniziali, per t → +∞ questo termine prevale sugli altri,
e la risposta del sistema diverge:

x(t)
t→∞−−−→ Ft

2mω
sin(ωt) (179)

Questa è la risposta a regime del sistema in risonanza.
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Figura 33: Risposta dell’oscillatore in risonanza: l’ampiezza delle oscillazioni cresce linearmente
nel tempo. L’inviluppo è la retta di coefficiente angolare F/(2mω).

Esempi di risonanza. Il fenomeno della risonanza ha conseguenze pratiche rilevanti:

• Vetri che si rompono per effetto di suoni intensi: la frequenza dell’onda sonora raggiunge
quella naturale del vetro.

• Strutture che cedono per oscillazioni sincrone: stadi in cui i tifosi producono forzanti alla
frequenza naturale della struttura.

• Soldati che rompono il passo sui ponti: per evitare di eccitare la frequenza naturale del
ponte.

Limiti del modello lineare. La legge di Hooke Fe = −Kx è valida solo per piccole ampiezze.
Quando l’ampiezza supera determinati valori, il comportamento del sistema diventa non lineare
e il modello cessa di essere applicabile.

20 Risposta in frequenza dell’oscillatore smorzato

Lo studio della risposta in frequenza consiste nell’analizzare come varia la soluzione dell’e-
quazione differenziale al variare della frequenza della forzante. La risposta x(t) rappresenta
l’output del sistema per un dato input F cos(Ωt).

20.1 Riepilogo: oscillatore libero non smorzato

Per il sistema massa-molla senza smorzamento né forzante, l’equazione del moto è:

mẍ+Kx = 0 ⇒ ẍ+ ω2x = 0 (180)

con ω =
√

K/m. Il bilancio della quantità di moto fornisce10:

F⃗ (e) = ma⃗ (181)
10Per massa costante, F⃗ (e) = dp⃗/dt = mdv⃗/dt = ma⃗.
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Proiettando lungo l’asse del moto e imponendo F⃗ (e) = −Kx⃗:

−Kx = mẍ ⇒ mẍ+Kx = 0 (182)

L’equazione caratteristica γ2 +K/m = 0 ammette due casi:

• −K/m > 0: radici reali (caso non fisico per K,m > 0);

• −K/m < 0: radici complesse coniugate γ1,2 = ±jω ⇒ oscillazioni.

La soluzione, nel caso oscillatorio, è:

x(t) = x0 cos(ωt) +
ẋ0
ω

sin(ωt) (183)

20.2 Oscillatore smorzato e forzato

Consideriamo ora il sistema con uno smorzatore viscoso, caratterizzato da un coefficiente
g > 0 proporzionale alla velocitàẋ.

L’equazione del moto diventa:

mẍ+ gẋ+Kx = F cos(Ωt) (184)

Dividendo per m:
ẍ+

g

m
ẋ+

K

m
x =

F

m
cos(Ωt) (185)

Si introducono i parametri caratteristici:

• Pulsazione naturale: ω =
√

K/m

• Rapporto di smorzamento: ξ =
g

2ωm

Con queste definizioni, il termine g/m si riscrive come:

g

m
= 2ξω (186)

e l’equazione differenziale assume la forma canonica:

ẍ+ 2ξωẋ+ ω2x =
F

m
cos(Ωt) (187)

Interpretazione fisica. Il rapporto di smorzamento ξ è un parametro adimensionale che
caratterizza il comportamento del sistema:

• ξ = 0: nessuno smorzamento (oscillatore ideale);

• 0 < ξ < 1: sistema sottosmorzato (oscillazioni che decadono);

• ξ = 1: smorzamento critico;

• ξ > 1: sistema sovrasmorzato (nessuna oscillazione).
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20.3 Struttura della soluzione

La soluzione generale è:
x(t) = xGO(t) + xPN (t) (188)

Per un sistema smorzato (g > 0), la parte omogenea xGO(t) decade nel tempo. Dopo un
transitorio iniziale, per t → +∞ prevale la soluzione particolare xPN (t), che rappresenta la
risposta a regime del sistema.

In un sistema non smorzato con radici complesse coniugate, la parte omogenea:

xGO(t) = A cos(ωt) +B sin(ωt) (189)

persiste indefinitamente. L’introduzione dello smorzamento fa sì che l’energia non si conservi e
l’ampiezza di xGO(t) tenda a zero.

Risposta in frequenza. Lo studio della risposta in frequenza analizza come varia la soluzione
al variare di Ω (pulsazione della forzante), per diversi valori del rapporto di smorzamento ξ.

20.4 Classificazione in base al rapporto di smorzamento

L’equazione caratteristica dell’omogenea associata a (187) è:

δ2 + 2ξωδ + ω2 = 0 (190)

Le radici sono:
δ1,2 = −ξω ± ω

√
ξ2 − 1 (191)

La natura delle radici dipende dal valore di ξ:

Caso 1: 0 < ξ < 1 (sottosmorzamento). Il discriminante è negativo e le radici sono
complesse coniugate:

δ1,2 = −ξω ± jω
√

1− ξ2 = β ± jωd (192)

dove β = −ξω < 0 e ωd = ω
√

1− ξ2 è la pulsazione smorzata. Il sistema presenta un
comportamento oscillatorio con ampiezza che decade esponenzialmente.

20.5 Classificazione dei regimi di smorzamento

Il comportamento dell’oscillatore smorzato dipende criticamente dal valore del rapporto di
smorzamento ξ. Si distinguono tre regimi fondamentali:

Caso 1: Sottosmorzamento (0 < ξ < 1). Le radici dell’equazione caratteristica sono com-
plesse coniugate, e il sistema presenta un comportamento oscillatorio con ampiezza che decade
esponenzialmente.

Caso 2: Smorzamento critico (ξ = 1). Le radici sono reali e coincidenti. Il sistema non
oscilla, ma rappresenta il caso limite tra comportamento oscillatorio e non oscillatorio.
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Caso 3: Sovrasmorzamento (ξ > 1). Le radici sono reali e distinte. Il sistema non presenta
oscillazioni e ritorna all’equilibrio in modo aperiodico.

Interpretazione fisica. Lo smorzamento critico ξ = 1 rappresenta la condizione di confine:
per ξ leggermente inferiore a 1, il sistema inizia a oscillare; per ξ superiore a 1, il sistema ritorna
all’equilibrio senza oscillare. Un esempio pratico è il sistema di sospensioni di un veicolo: si
progetta tipicamente con ξ > 1 (sovrasmorzamento) affinché la risposta a una perturbazione
non sia oscillatoria.

20.6 Lo smorzamento critico

La condizione ξ = 1 equivale a:
ξ = ξcrit = 2mω (193)

Infatti, dalla definizione del rapporto di smorzamento:

ξ =
g

2mω
=

g

ξcrit
= 1 ⇒ g = ξcrit (194)

Lo smorzamento critico ξcrit dipende quindi dalla massa m e dalla pulsazione naturale ω =√
K/m del sistema.

21 Analisi dell’oscillatore smorzato forzato

Consideriamo l’equazione del moto completa:

mẍ+ gẋ+Kx = F cos(Ωt) (195)

Dividendo per m e cercando una soluzione del tipo x(t) = Ceαt, l’equazione caratteristica
dell’omogenea associata è:

α2 +
g

m
α+

K

m
= 0 (196)

Le radici sono:

α1,2 = − g

2m
±
√( g

2m

)2
− K

m
(197)

Introducendo i parametri ω =
√

K/m e ξ = g/(2mω), le radici si riscrivono come:

α1,2 = −ξω ± ω
√

ξ2 − 1 (198)

L’equazione differenziale assume la forma canonica con un solo parametro adimensionale ξ:

ẍ+ 2ξωẋ+ ω2x =
F

m
cos(Ωt) (199)

21.1 Caso sottosmorzato: radici complesse coniugate

Per 0 < ξ < 1, il discriminante è negativo (ξ2 − 1 < 0) e le radici sono complesse coniugate:

α1,2 = β ± jωD (200)

dove:
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• β = −ξω < 0 è la parte reale (negativa per ξ > 0)

• ωD = ω
√

1− ξ2 è la pulsazione naturale smorzata

Si noti che ωD ̸= ω: la presenza dello smorzamento riduce la pulsazione delle oscillazioni libere.
Per ξ → 0, si ha ωD → ω; per ξ → 1, si ha ωD → 0.

Soluzione dell’omogenea. La soluzione generale dell’omogenea, applicando le formule di
Eulero, è:

xGO(t) = eβt[A cos(ωDt) +B sin(ωDt)] (201)

Poiché β < 0 (essendo ξ > 0), per t → ∞ il fattore esponenziale tende a zero:

lim
t→∞

xGO(t) = 0 (202)

Interpretazione fisica. La parte omogenea rappresenta il transitorio: oscillazioni che de-
cadono esponenzialmente a causa dello smorzamento. Dopo un tempo sufficientemente lungo,
questa componente diventa trascurabile.

21.2 Soluzione particolare

Per la forzante F cos(Ωt), si cerca una soluzione particolare della forma:

xPN (t) = C cos(Ωt) +D sin(Ωt) (203)

Calcolando le derivate:

ẋPN (t) = Ω[−C sin(Ωt) +D cos(Ωt)] (204)
ẍPN (t) = −Ω2[C cos(Ωt) +D sin(Ωt)] (205)

Sostituendo nell’equazione (199) e raccogliendo i termini in cos(Ωt) e sin(Ωt):

cos(Ωt)[−Ω2C + 2ξωΩD + ω2C] + sin(Ωt)[−Ω2D − 2ξωΩC + ω2D] =
F

m
cos(Ωt) (206)

Per l’uguaglianza dei coefficienti:(ω2 − Ω2)C + 2ξωΩD =
F

m

−2ξωΩC + (ω2 − Ω2)D = 0
(207)

Risolvendo il sistema:

C =
(F/m)(ω2 − Ω2)

(ω2 − Ω2)2 + 4ω2ξ2Ω2
(208)

D =
2(F/m)ξωΩ

(ω2 − Ω2)2 + 4ω2ξ2Ω2
(209)
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21.3 Forma in ampiezza e fase

I coefficienti C e D possono essere espressi in termini di ampiezza ∆ e fase φ:{
C = ∆cosφ

D = −∆sinφ
(210)

La soluzione particolare si riscrive quindi come:

xPN (t) = ∆cos(Ωt+ φ) (211)

Le relazioni inverse sono:

∆ =
√

C2 +D2, φ = arctan

(
−D

C

)
(212)

Interpretazione fisica. Dopo il transitorio (t → ∞), la risposta del sistema è:

lim
t→∞

x(t) = xPN (t) = ∆cos(Ωt+ φ) (213)

Il sistema oscilla alla frequenza della forzante Ω (non alla sua frequenza naturale ω), con ampiezza
∆ e sfasamento φ rispetto alla forzante. Lo sfasamento è sempre negativo (ritardo): il sistema
risponde in ritardo rispetto all’eccitazione.

22 Risposta in frequenza

Lo studio della risposta in frequenza consiste nell’analizzare come variano l’ampiezza ∆ e la
fase φ della risposta a regime al variare della frequenza Ω della forzante.

22.1 Espressioni adimensionali

Introducendo il rapporto di frequenze adimensionale δ = Ω/ω, dopo opportune manipolazioni
algebriche11 si ottengono le espressioni fondamentali:

Ampiezza:

∆ =
F/K√

(1− δ2)2 + 4ξ2δ2
(214)

dove si è usato K = mω2.

Fase:

φ = arctan

(
− 2ξδ

1− δ2

)
(215)

La soluzione particolare a regime è quindi:

xPN (t) =
F/K√

(1− δ2)2 + 4ξ2δ2
cos

(
Ωt+ arctan

[
− 2ξδ

1− δ2

])
(216)

11Si moltiplica numeratore e denominatore per ω4 e si raccoglie.
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22.2 Ampiezza adimensionalizzata

Per rappresentare graficamente la risposta in frequenza, si introduce l’ampiezza adimensio-
nalizzata:

∆̂ =
∆

F/K
=

1√
(1− δ2)2 + 4ξ2δ2

(217)

Il fattore di normalizzazione F/K ha un significato fisico preciso: rappresenta l’ampiezza della
risposta statica.

Interpretazione fisica. Per δ = 0 (cioè Ω = 0, forzante statica costante), si ha:

x(t) = ∆cos(0 + φ) = ∆ =
F

K
(218)

Questo è lo spostamento che la massa assume sotto l’azione di una forza costante F : raggiunto
l’equilibrio, la massa non si muove più. L’ampiezza adimensionalizzata ∆̂ rappresenta quindi il
rapporto tra l’ampiezza dinamica e quella statica.

22.3 Diagramma di risposta in frequenza: ampiezza

Figura 34: Diagramma di risposta in frequenza: ampiezza adimensionalizzata ∆̂ in funzione del
rapporto di frequenze δ, per diversi valori del rapporto di smorzamento ξ. All’aumentare di ξ,
il picco si abbassa e si sposta verso sinistra.

Dal diagramma si osservano le seguenti proprietà fondamentali:

1. Comportamento per δ = 0. Per qualsiasi valore di ξ, si ha ∆̂ = 1. Le ampiezze statiche
variano da sistema a sistema (dipendono da F e K), ma il rapporto adimensionalizzato è sempre
unitario.

2. Effetto dello smorzamento. Al diminuire di ξ (verso il sottosmorzamento), il picco di
risonanza diventa più pronunciato e si sposta verso δ = 1. Al limite ξ → 0, si ha un asintoto
verticale in δ = 1 (risonanza ideale).

3. Comportamento per δ → ∞. Tutte le curve tendono asintoticamente a zero. Per
frequenze elevate della forzante, il sistema non riesce a seguire l’eccitazione a causa della sua
inerzia: la forzante cambia segno prima che la massa possa reagire.
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4. Posizione del massimo. Derivando ∆̂ rispetto a δ e ponendo la derivata uguale a zero:

∂∆̂

∂δ
= 0 ⇒ δM =

√
1− 2ξ2 (219)

Il massimo esiste solo se l’argomento della radice è positivo:

1− 2ξ2 > 0 ⇒ ξ <
1√
2
≈ 0,707 (220)

Per ξ = 1/
√
2, il massimo si ha in δM = 0. Per ξ > 1/

√
2, non esiste un massimo locale: la

funzione è monotona decrescente.

Figura 35: Suddivisione del diagramma di risposta in frequenza: per ξ < 1/
√
2 si ha sottosmor-

zamento con picco di risonanza; per ξ > 1/
√
2 si ha comportamento sovrasmorzato senza picco.

Il valore ξ = 1 indica il passaggio da radici complesse a reali nell’omogenea.

Interpretazione fisica. Il valore ξ = 1/
√
2 separa due comportamenti qualitativamente

diversi:

• Per ξ < 1/
√
2: il sistema presenta un picco di amplificazione (zona di sottosmorzamento);

• Per ξ > 1/
√
2: il sistema non presenta amplificazione rispetto alla risposta statica (zona

di sovrasmorzamento).

Si noti che ξ = 1 (smorzamento critico) ricade nella zona di sovrasmorzamento: indica il passag-
gio da radici complesse a radici reali dell’omogenea, ma non rappresenta un valore critico per
l’ampiezza della risposta forzata.

22.4 Il caso limite: risonanza ideale

Per ξ = 0 (assenza di smorzamento) e δ = 1 (cioè Ω = ω), si ha la condizione di risonanza
ideale. L’ampiezza adimensionalizzata presenta un asintoto verticale: ∆̂ → ∞.

In questo caso, le radici dell’omogenea sono α1,2 = ±jω, e la soluzione completa (già trattata
nel caso di risonanza senza smorzamento) è:

x(t) = x0 cos(ωt) +
ẋ0
ω

sin(ωt) +
F

2ωm
t sin(ωt) (221)

L’ultimo termine cresce linearmente con t: l’ampiezza diverge nel tempo.
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Figura 36: Caso limite ξ = 0: in assenza di smorzamento, per δ = 1 si ha un asintoto verticale
(risonanza ideale).

Figura 37: Risposta temporale in condizioni di risonanza ideale (ξ = 0, Ω = ω): l’ampiezza delle
oscillazioni cresce linearmente nel tempo.

Interpretazione fisica. In assenza di smorzamento, l’energia fornita dalla forzante si accu-
mula nel sistema senza essere dissipata, causando una crescita illimitata dell’ampiezza. Nella
realtà, questo comportamento è limitato da non linearità e fenomeni dissipativi che intervengono
per ampiezze elevate.

22.5 Diagramma di risposta in frequenza: fase

Lo sfasamento φ tra risposta e forzante è dato da:

φ = arctan

(
− 2ξδ

1− δ2

)
(222)

Per il caso limite ξ = 0, si distinguono tre regioni:

1. δ < 1 (Ω < ω): La risposta è in fase con la forzante (φ = 0).

2. δ = 1 (Ω = ω): Si verifica un salto discontinuo; la risposta è in quadratura (φ = −π/2),
cioè in ritardo di 90◦.
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Figura 38: Diagramma delle fasi per il caso ξ = 0: la risposta è in fase con la forzante per δ < 1,
salta a −π/2 (quadratura) in δ = 1, e si porta in opposizione di fase (−π) per δ > 1.

3. δ > 1 (Ω > ω): La risposta è in opposizione di fase (φ = −π), cioè in ritardo di 180◦.

Interpretazione fisica. Il sistema risponde sempre in ritardo rispetto alla forzante. Per
frequenze basse, il ritardo è trascurabile; alla risonanza, il ritardo è di un quarto di periodo; per
frequenze alte, il sistema risponde in opposizione di fase, muovendosi in direzione contraria alla
forzante.

22.6 Effetto dello smorzamento sul diagramma delle fasi

Nel caso di assenza di smorzamento (ζ = 0), il diagramma delle fasi presenta una discontinuità:
la funzione φ(δ) compie un salto da 0 a −π in corrispondenza della risonanza (δ = 1).

In presenza di smorzamento (ζ ̸= 0), il comportamento cambia qualitativamente: la funzione
arctan è continua, e quindi lo sfasamento varia in modo graduale al crescere del rapporto di
frequenze δ.

Figura 39: Diagramma delle fasi in presenza di smorzamento (ζ > 0): lo sfasamento φ varia con
continuità da 0 a −π. All’aumentare di ζ, la transizione diventa più graduale.

Interpretazione fisica. Il diagramma delle fasi è fondamentale per comprendere la relazione
temporale tra l’ingresso (forzante) e l’uscita (risposta del sistema). Lo sfasamento φ indica
di quanto la risposta è in ritardo rispetto alla forzante. La continuità della funzione nel caso
smorzato riflette il fatto che il sistema dissipa energia gradualmente, evitando i comportamenti
singolari tipici della risonanza ideale.
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23 Sintesi sull’analisi spettrale delle matrici

In questa sezione si richiamano i concetti fondamentali dell’algebra lineare necessari per la
comprensione della diagonalizzazione delle matrici, strumento essenziale in meccanica razionale
per lo studio dei sistemi a più gradi di libertà.

23.1 Spazi vettoriali e basi

Uno spazio vettoriale V è un insieme dotato di due operazioni: la somma tra vettori e il
prodotto per uno scalare. Formalmente, se u⃗, v⃗ ∈ V e α ∈ R, allora u⃗+ v⃗ ∈ V e αu⃗ ∈ V .

Un esempio fondamentale è lo spazio Rn:

Rn =


x1

...
xn

 : x1, . . . , xn ∈ R

 (223)

Una combinazione lineare di vettori v⃗1, . . . , v⃗n è un vettore della forma:

u⃗ = a1v⃗1 + a2v⃗2 + · · ·+ anv⃗n, a1, . . . , an ∈ R (224)

I vettori v⃗1, . . . , v⃗n si dicono linearmente dipendenti se esiste una loro combinazione lineare
nulla con coefficienti non tutti nulli:

a1v⃗1 + · · ·+ anv⃗n = 0⃗, con almeno un ak ̸= 0 (225)

Si dicono linearmente indipendenti se l’unica combinazione lineare nulla è quella con tutti i
coefficienti nulli.

Un insieme di vettori {v⃗1, . . . , v⃗n} costituisce una base di V se:

• è un insieme di generatori di V (ogni vettore di V è esprimibile come combinazione lineare);

• i vettori sono linearmente indipendenti.

La dimensione di uno spazio vettoriale è il numero di elementi di una sua qualunque base. Per
esempio, Rn ha dimensione n.

23.2 Applicazioni lineari

Un’applicazione da un insieme A a un insieme B è una legge f : A → B che associa a ciascun
elemento di A un elemento di B.

Un’applicazione si dice:

• iniettiva se a ̸= a′ ⇒ f(a) ̸= f(a′);

• suriettiva se Im f = B;

• biiettiva (o biunivoca) se è sia iniettiva che suriettiva.

Un’applicazione lineare soddisfa la proprietà:

f(au⃗+ bv⃗) = af(u⃗) + bf(v⃗), a, b ∈ R, u⃗, v⃗ ∈ V (226)
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Rappresentazione matriciale. Ogni applicazione lineare F : Rn → Rm può essere rappre-
sentata mediante una matrice A di dimensione m× n:

F (u⃗) = Au⃗ = v⃗ (227)

23.3 Endomorfismi e cambio di base

Un endomorfismo è un’applicazione lineare f : V → V , ovvero un’applicazione dallo spazio
vettoriale in sé stesso.

Fissata una base B di V , si definisce matrice associata a f rispetto a B la matrice che
rappresenta l’applicazione lineare. Tale matrice dipende dalla scelta della base.

Se B e B′ sono due basi di V , ogni vettore di B′ può essere espresso come combinazione lineare
dei vettori di B:

B′ = BM (228)

dove M è la matrice di passaggio (o di cambiamento di base), invertibile.

Due matrici quadrate A e A′ si dicono simili se esiste una matrice invertibile M tale che:

A′ = M−1AM (229)

Se A e A′ sono matrici associate allo stesso endomorfismo f rispetto a basi diverse, allora sono
simili.

23.4 Autovalori e autovettori

Un vettore v⃗ ̸= 0⃗ si dice autovettore di un endomorfismo f associato all’autovalore λ ∈ R se:

f(v⃗) = λv⃗ (230)

In termini matriciali, dato un endomorfismo con matrice associata A:

Az⃗ = λz⃗ (231)

Interpretazione fisica. L’autovettore z⃗ rappresenta una direzione privilegiata: quando l’o-
peratore A agisce su di esso, il risultato è semplicemente un riscalamento del vettore stesso,
senza cambiamento di direzione.

Calcolo degli autovalori. Gli autovalori si determinano risolvendo l’equazione caratteri-
stica:

det(A− λI) = 0 (232)

Questa è un’equazione polinomiale di grado n (per una matrice n× n) nell’incognita λ.

Calcolo degli autovettori. Per ciascun autovalore λk, gli autovettori associati si trovano
risolvendo il sistema:

(A− λkI)z⃗
(k) = 0⃗ (233)
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Molteplicità. Per ogni autovalore λ si definiscono:

• Molteplicità algebrica: il numero di volte che λ annulla il polinomio caratteristico;

• Molteplicità geometrica: la dimensione dell’autospazio associato, pari a n−rg(A−λI).

23.5 Diagonalizzazione

Un endomorfismo f si dice diagonalizzabile se esiste una base di V formata da autovettori di
f . In tal caso, la matrice associata rispetto a questa base è diagonale:

Adiag =


λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn

 (234)

Procedimento di diagonalizzazione.

1. Calcolare gli autovalori risolvendo det(A− λI) = 0;

2. Per ogni autovalore λk, determinare gli autovettori risolvendo (A− λkI)z⃗
(k) = 0⃗;

3. Costruire la matrice di passaggio T disponendo gli autovettori come colonne;

4. La matrice diagonalizzata è B = T−1AT .

23.6 Ortogonalità e matrici simmetriche

Due vettori v⃗ e u⃗ si dicono ortogonali se:

v⃗ ⊥ u⃗ ⇔ v⃗ · u⃗ = 0 (235)

La norma di un vettore in Rn è:

∥v⃗∥ =
√

v21 + v22 + · · ·+ v2n (236)

Una base si dice ortonormale se i vettori sono a due a due ortogonali e hanno norma unitaria.

Un endomorfismo si dice simmetrico se la sua matrice associata è simmetrica: AT = A.

Teorema spettrale. Se f è un endomorfismo simmetrico (quindi A è simmetrica), allora:

• f è diagonalizzabile;

• esiste una base ortonormale costituita da autovettori di f ;

• gli autovettori relativi ad autovalori distinti sono ortogonali.

Se la matrice di passaggio T è formata da autovettori ortonormali, allora T è ortogonale:

T−1 = T T ⇒ TT T = I (237)

In questo caso, la diagonalizzazione si scrive:

B = T TAT (238)
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23.7 Esempio di diagonalizzazione

Consideriamo la matrice simmetrica:

A =

(
2 −1
−1 2

)
(239)

Passo 1: Autovalori. L’equazione caratteristica è:

det(A− λI) =

∣∣∣∣2− λ −1
−1 2− λ

∣∣∣∣ = (2− λ)2 − 1 = λ2 − 4λ+ 3 = 0 (240)

Le soluzioni sono λ1 = 1 e λ2 = 3.

Passo 2: Autovettori. Per λ1 = 1:(
1 −1
−1 1

)(
z1
z2

)
=

(
0
0

)
⇒ z1 = z2 ⇒ z⃗(1) =

(
1
1

)
(241)

Per λ2 = 3: (
−1 −1
−1 −1

)(
z1
z2

)
=

(
0
0

)
⇒ z1 = −z2 ⇒ z⃗(2) =

(
1
−1

)
(242)

Passo 3: Matrice di passaggio e diagonalizzazione.

T =

(
1 1
1 −1

)
(243)

La matrice diagonalizzata è12:

A′ = T TAT =

(
2 0
0 6

)
(244)

23.8 Matrice di trasformazione tra sistemi di riferimento

Consideriamo un vettore v⃗ espresso in due sistemi di riferimento con basi {ê1, ê2, ê3} e {ê′1, ê′2, ê′3}:

v⃗ =

3∑
j=1

vj êj =

3∑
k=1

v′kê
′
k (245)

Le componenti nel nuovo sistema si ottengono proiettando il vettore sui nuovi versori:

v′k = v⃗ · ê′k =

3∑
j=1

vj(êj · ê′k) (246)

In forma matriciale: v′1
v′2
v′3

 =

ê1 · ê′1 ê2 · ê′1 ê3 · ê′1
ê1 · ê′2 ê2 · ê′2 ê3 · ê′2
ê1 · ê′3 ê2 · ê′3 ê3 · ê′3

v1
v2
v3

 (247)

12Il risultato
(
2 0
0 6

)
differisce dalla matrice diagonale degli autovalori per un fattore 2, poiché gli autovettori

non sono normalizzati. Normalizzando, si otterrebbe
(
1 0
0 3

)
.
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Figura 40: Due sistemi di riferimento con origine comune: le basi {ê1, ê2, ê3} e {ê′1, ê′2, ê′3} sono
ruotate di un angolo θ.

La matrice di trasformazione ha elementi:

Tkj = êj · ê′k (248)

Per una rotazione di angolo θ attorno all’asse ê3:

T =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (249)

24 Richiami su operatori lineari e momenti

24.1 Operatore differenziale lineare

Un operatore L applicato a una funzione u(t) soddisfa le proprietà di linearità:

L[αu(t)] = αL[u(t)] (250)
L[u(t) + w(t)] = L[u(t)] + L[w(t)] (251)

L[α1u1(t) + α2u2(t)] = α1L[u1(t)] + α2L[u2(t)] (252)

Un’equazione differenziale si classifica come:

• ordinaria: dipende da una sola variabile indipendente;

• lineare: funzione e derivate compaiono con esponente unitario;

• a coefficienti costanti: i coefficienti non dipendono dalla variabile;

• omogenea o non omogenea: a seconda che f(t) = 0 o f(t) ̸= 0.

24.2 Condizioni di annullamento del momento

Il momento di un vettore N⃗ applicato in P rispetto al polo O:

M⃗O = O⃗P × N⃗ (253)

è nullo se e solo se si verifica almeno una delle seguenti condizioni:
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1. O ≡ P (il polo coincide con il punto di applicazione): O⃗P = 0⃗;

2. N⃗ = 0⃗ (il vettore è nullo);

3. O⃗P ∥ N⃗ (il vettore posizione è parallelo al vettore applicato).

24.3 Coseni direttori

I coseni direttori di un vettore n⃗ sono i coseni degli angoli che il vettore forma con gli assi
coordinati.

Figura 41: Coseni direttori: il vettore n⃗ forma angoli θi, θj , θk con i rispettivi assi coordinati.

Se î, ĵ, k̂ sono i versori degli assi, i coseni direttori sono:

cos θi =
n⃗ · î
|n⃗|

, cos θj =
n⃗ · ĵ
|n⃗|

, cos θk =
n⃗ · k̂
|n⃗|

(254)

24.4 Diagramma delle fasi in presenza di smorzamento

In tutti i casi con ζ ̸= 0 (presenza di smorzamento), il comportamento dello sfasamento è
continuo e non presenta discontinuità. Questo perché la funzione arctan è continua su tutto il
suo dominio.

Figura 42: Diagramma delle fasi in presenza di smorzamento (ζ > 0): lo sfasamento φ varia con
continuità da 0 a −π. All’aumentare di ζ, la transizione diventa più graduale.

Interpretazione fisica. Il diagramma delle fasi è fondamentale per comprendere lo sfasamen-
to tra l’input (forzante) e l’output (risposta del sistema). Al variare del rapporto di smorzamento
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ζ, la curva di fase si modifica: per valori elevati di ζ, la transizione da φ = 0 a φ = −π av-
viene in modo molto graduale, mentre per ζ piccoli la transizione è più ripida, avvicinandosi al
comportamento discontinuo del caso ideale ζ = 0.

25 Dimostrazione dell’ortogonalità degli autovettori

Per una matrice simmetrica A (A = AT ), gli autovettori corrispondenti ad autovalori distinti
sono ortogonali. Questa proprietà fondamentale si dimostra nel modo seguente.

Siano z(1) e z(2) due autovettori di A associati rispettivamente agli autovalori λ1 e λ2, con
λ1 ̸= λ2. Per definizione:

Az(1) = λ1z
(1) (255)

Az(2) = λ2z
(2) (256)

Trasponiamo l’equazione (256):
z(2)TAT = λ2z

(2)T (257)

Poiché A è simmetrica (AT = A):
z(2)TA = λ2z

(2)T (258)

Moltiplichiamo l’equazione (255) a sinistra per z(2)T :

z(2)TAz(1) = λ1z
(2)T z(1) (259)

Moltiplichiamo l’equazione (258) a destra per z(1):

z(2)TAz(1) = λ2z
(2)T z(1) (260)

Sottraendo (260) da (259):
0 = (λ1 − λ2)z

(2)T z(1) (261)

Poiché per ipotesi λ1 ̸= λ2, deve essere:

z(2)T z(1) = 0 ⇒ z(1) ⊥ z(2) (262)

26 Risoluzione del sistema per i coefficienti C e D

Riprendiamo il sistema ottenuto dalla sostituzione della soluzione particolare nell’equazione
dell’oscillatore smorzato forzato:{

C(ω2 − Ω2) + 2ωξΩD = F/m

D(ω2 − Ω2)− 2ωξΩC = 0
(263)

Dalla seconda equazione ricaviamo C:

C =
D(ω2 − Ω2)

2ωξΩ
(264)

Sostituendo nella prima equazione:

D
(ω2 − Ω2)2

2ωξΩ
+ 2ωξΩD =

F

m
(265)
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Raccogliendo D:

D

[
(ω2 − Ω2)2 + 4ω2ξ2Ω2

2ωξΩ

]
=

F

m
(266)

Da cui:

D =
2(F/m)ωξΩ

(ω2 − Ω2)2 + 4ω2ξ2Ω2
(267)

Sostituendo nell’espressione di C:

C =
(F/m)(ω2 − Ω2)

(ω2 − Ω2)2 + 4ω2ξ2Ω2
(268)

27 Dimostrazione del prodotto scalare in componenti

Dimostriamo che il prodotto scalare tra due vettori può essere espresso come somma dei prodotti
delle componenti omologhe:

N⃗ · u⃗ =

3∑
k=1

Nkuk (269)

Sviluppando i vettori in termini dei versori della base:

(
3∑

k=1

Nkûk

)
·

 3∑
j=1

uj ûj

 =

3∑
k=1

3∑
j=1

Nkuj(ûk · ûj) (270)

Poiché i versori sono ortonormali, ûk · ûj = δkj (delta di Kronecker), tutti i termini con k ̸= j si
annullano13:

N⃗ · u⃗ =

3∑
k=1

Nkuk = u⃗ · N⃗ (271)

L’ultima uguaglianza esprime la commutatività del prodotto scalare.

28 Teorema di Varignon

Il teorema di Varignon stabilisce una proprietà fondamentale dei momenti di vettori applicati
in uno stesso punto.

Enunciato. Dati N vettori applicati in uno stesso punto P , il momento risultante rispetto a
un polo O è uguale al momento della risultante applicata in P :

M⃗O =

N∑
k=1

O⃗P × N⃗k = O⃗P ×
N∑
k=1

N⃗k = O⃗P × R⃗ (272)

13Il prodotto scalare ûk · ûj = cos 90◦ = 0 quando k ̸= j, essendo i versori mutuamente ortogonali.
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Figura 43: Illustrazione del teorema di Varignon: più vettori N⃗1, N⃗2, . . . applicati nello stesso
punto P possono essere sostituiti dalla loro risultante R⃗ per il calcolo del momento rispetto a
O.

Dimostrazione. Poiché tutti i vettori sono applicati nello stesso punto P , il raggio vettore O⃗P
non dipende dall’indice k della sommatoria. Per la proprietà distributiva del prodotto vettoriale
rispetto alla somma:

M⃗O =

N∑
k=1

O⃗P × N⃗k = O⃗P ×

(
N∑
k=1

N⃗k

)
= O⃗P × R⃗ (273)

Interpretazione fisica. Il teorema afferma che, ai fini del calcolo del momento, un sistema
di vettori concorrenti può essere sostituito dalla loro risultante. Questo semplifica notevolmente
l’analisi di sistemi di forze applicate in uno stesso punto.

29 Significato fisico dell’asse centrale

In meccanica, i vettori applicati e i vettori risultanti rappresentano tipicamente forze, e i momenti
sono momenti di forze. L’interesse pratico per l’asse centrale deriva dalla necessità di minimizzare
le sollecitazioni a cui le strutture di sostegno sono sottoposte.

In un sistema di vettori applicati, la risultante R⃗ è univocamente determinata, mentre il momento
risultante M⃗O varia in funzione del polo scelto. Si cercano quindi i punti che, presi come polo,
rendono minimo il modulo del momento risultante: questi punti costituiscono l’asse centrale
del sistema.

30 Derivazione della posizione del massimo dell’ampiezza

Per determinare la posizione del massimo dell’ampiezza adimensionalizzata ∆̂, calcoliamo la
derivata rispetto a δ e la poniamo uguale a zero:

d∆̂

dδ
=

d

dδ

[
1√

(1− δ2)2 + 4ξ2δ2

]
= 0 (274)
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Applicando la regola di derivazione:

d∆̂

dδ
=

−1
2 [−2(1− δ2)(−2δ) + 8ξ2δ]

[(1− δ2)2 + 4ξ2δ2]3/2
= 0 (275)

Affinché la frazione si annulli, basta annullare il numeratore:

−[(1− δ2)(−2δ) + 4ξ2δ] = 0 (276)

Sviluppando:
−[−2δ + 2δ3 + 4ξ2δ] = 0 (277)

−2δ[−1 + δ2 + 2ξ2] = 0 (278)

Le soluzioni sono:

• δ = 0 (soluzione banale, corrispondente a ∆̂ = 1)

• δ2 = 1− 2ξ2, da cui δM =
√

1− 2ξ2

31 Caso particolare: radici nulle coincidenti

Consideriamo il caso in cui α1 = 0 e −b/a = 0 nell’equazione caratteristica, ovvero:

δ2 = 0 ⇒ δ1,2 = 0 (molteplicità algebrica 2) (279)

La soluzione generale dell’omogenea è:

u(t) = C1e
0·t + C2te

0·t = C1 + C2t (280)

Applicando le condizioni iniziali u(0) = u0 e u̇(0) = u̇0:

u(0) = C1 = u0 (281)
u̇(0) = C2 = u̇0 (282)

La soluzione è quindi:
u(t) = u0 + u̇0t (283)

Figura 44: Andamento lineare della soluzione nel caso di radici nulle coincidenti: u(t) = u0+u̇0t.

Interpretazione fisica. Questa soluzione descrive il moto di un corpo su cui non agisce alcuna
forza netta: il corpo si muove di moto rettilineo uniforme con velocità costante u̇0, partendo
dalla posizione iniziale u0. Se inoltre u̇0 = 0, il corpo permane indefinitamente in quiete nella
posizione u0.
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32 Coseni direttori

I coseni direttori di un vettore n⃗ sono i coseni degli angoli che il vettore forma con gli assi
coordinati.

Figura 45: Coseni direttori: il vettore n⃗ forma angoli θi, θj , θk con i rispettivi assi coordinati î,
ĵ, k̂.

Il versore associato a n⃗ si esprime come:

l̂ = cos θi î+ cos θj ĵ + cos θk k̂ (284)

I coseni direttori soddisfano la relazione di normalizzazione:

cos2 θi + cos2 θj + cos2 θk = 1 (285)
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