
Meccanica Razionale

Università Degli Studi Di Roma 3

Docente: Umberto Iemma

Appunti di: Davide Antonio Mautone

notestobook.it

Anno Accademico 2025/2026

https://notestobook.it
https://notestobook.it


NOTESTOBOOK

2



NOTESTOBOOK

Indice

1 Cinematica e dinamica del punto materiale . . . . . . . . . . . . . . . . . . . . . 6

2 Punto materiale soggetto a forza di natura inerziale . . . . . . . . . . . . . . . . . 6

2.1 Metodo 1: integrazione diretta . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Metodo 2: soluzione dell’equazione differenziale tramite omogenea e par-
ticolare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Cinematica del punto materiale — Legge oraria . . . . . . . . . . . . . . . . . . . 8

3.1 Vettore posizione e traiettoria . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Vettore spostamento, velocità e accelerazione . . . . . . . . . . . . . . . . 9

3.3 Versore tangente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4 Versore normale e curvatura . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.5 Curvatura di una curva piana . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.6 Terna intrinseca della traiettoria . . . . . . . . . . . . . . . . . . . . . . . 13

4 Caratteristiche locali del moto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Vettore velocità in coordinate intrinseche . . . . . . . . . . . . . . . . . . 14

4.2 Vettore accelerazione in coordinate intrinseche . . . . . . . . . . . . . . . 14

5 Pendolo semplice — Oscillatore non forzato . . . . . . . . . . . . . . . . . . . . . 15

6 Dinamica del pendolo semplice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6.1 Vettore posizione e ascissa curvilinea . . . . . . . . . . . . . . . . . . . . . 16

6.2 Gradi di libertà e vincoli . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6.3 Bilancio delle forze e proiezione cartesiana . . . . . . . . . . . . . . . . . . 17

6.4 Proiezione sulla terna intrinseca . . . . . . . . . . . . . . . . . . . . . . . 18

6.5 Linearizzazione dell’equazione del moto . . . . . . . . . . . . . . . . . . . 19

6.6 Soluzione dell’equazione linearizzata . . . . . . . . . . . . . . . . . . . . . 20

6.7 Determinazione della reazione vincolare . . . . . . . . . . . . . . . . . . . 20

6.8 Pendolo semplice inclinato . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7 Vincoli scabri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8 Conservatività, potenzialità e irrotazionalità . . . . . . . . . . . . . . . . . . . . . 23

8.1 Campo vettoriale conservativo . . . . . . . . . . . . . . . . . . . . . . . . 23

8.2 Potenzialità . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3



NOTESTOBOOK

8.3 Irrotazionalità . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

8.4 Legami tra le definizioni . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

9 Dalla conservatività alla potenzialità . . . . . . . . . . . . . . . . . . . . . . . . . 26

9.1 Il teorema di Stokes e il contesto geometrico . . . . . . . . . . . . . . . . . 26

9.2 Funzione scalare di punto e indipendenza dal percorso . . . . . . . . . . . 26

9.3 Dimostrazione: conservatività implica potenzialità . . . . . . . . . . . . . 26

10 Forze conservative, traiettorie e concetti di equilibrio . . . . . . . . . . . . . . . . 27

10.1 Proiezione della forza lungo una direzione . . . . . . . . . . . . . . . . . . 28

10.2 Derivata direzionale e proiezione lungo la traiettoria . . . . . . . . . . . . 28

10.3 Relazioni tra conservatività, potenzialità e irrotazionalità . . . . . . . . . 29

10.4 Esempio: verifica di irrotazionalità . . . . . . . . . . . . . . . . . . . . . . 30

10.5 Ruolo della derivata del potenziale nell’equilibrio . . . . . . . . . . . . . . 30

11 Bilancio energetico: lavoro ed energia . . . . . . . . . . . . . . . . . . . . . . . . . 31

11.1 Teorema dell’energia cinetica . . . . . . . . . . . . . . . . . . . . . . . . . 31

11.2 Concetto di lavoro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

11.3 Lavoro di forze conservative e funzione potenziale . . . . . . . . . . . . . . 32

11.4 Decomposizione della forza e bilancio energetico completo . . . . . . . . . 32

11.5 Energia potenziale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

11.6 Teorema di conservazione dell’energia meccanica . . . . . . . . . . . . . . 33

12 Equilibrio e stabilità . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

12.1 Condizione di equilibrio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

12.2 Classificazione della stabilità . . . . . . . . . . . . . . . . . . . . . . . . . 33

12.3 Applicazione: il loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

13 Equilibrio e studio della stabilità per un punto materiale con un grado di libertà 36

14 Stabilità dell’equilibrio di un punto materiale su traiettoria assegnata . . . . . . . 36

14.1 Condizioni di equilibrio e sollecitazione . . . . . . . . . . . . . . . . . . . . 36

14.2 Equazione del moto linearizzata . . . . . . . . . . . . . . . . . . . . . . . . 37

14.3 Equazione caratteristica e parametri G e K . . . . . . . . . . . . . . . . . 37

14.4 Classificazione dei casi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

14.5 Metodi energetici per lo studio della stabilità: forze conservative . . . . . 43

15 Metodo energetico per la stabilità dell’equilibrio . . . . . . . . . . . . . . . . . . . 43

15.1 Forza e derivata dell’energia potenziale lungo la traiettoria . . . . . . . . 43

15.2 Condizioni di equilibrio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

15.3 Studio della stabilità: linearizzazione . . . . . . . . . . . . . . . . . . . . . 44

15.4 Classificazione dell’equilibrio . . . . . . . . . . . . . . . . . . . . . . . . . 44

15.5 Sintesi del criterio energetico . . . . . . . . . . . . . . . . . . . . . . . . . 45

4



NOTESTOBOOK

15.6 Estensione a più gradi di libertà . . . . . . . . . . . . . . . . . . . . . . . 46

16 Approssimazione lineare di funzioni scalari e vettoriali . . . . . . . . . . . . . . . 46

16.1 Funzione reale a n variabili reali . . . . . . . . . . . . . . . . . . . . . . . 46

16.2 Funzione vettoriale a n variabili . . . . . . . . . . . . . . . . . . . . . . . . 46

16.3 Linearizzazione dell’equazione del moto vettoriale . . . . . . . . . . . . . . 47

17 Moti particolari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

17.1 Moto rettilineo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

17.2 Moto piano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

17.3 Moto centrale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

17.4 Moto circolare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

17.5 Moto armonico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

18 Esempi di forze conservative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

18.1 Forza peso e campo di forza uniforme . . . . . . . . . . . . . . . . . . . . 49

18.2 Campi di forza centrali . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

19 Energia potenziale nei campi di forze centrali . . . . . . . . . . . . . . . . . . . . 50

19.1 Proprietà del moto in un campo di forze centrali . . . . . . . . . . . . . . 51

19.2 Coordinate polari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

20 Campo di forza peso — Applicazione semplice . . . . . . . . . . . . . . . . . . . . 51

20.1 Risoluzione dell’equazione differenziale . . . . . . . . . . . . . . . . . . . . 52

20.2 Proiezione sugli assi del sistema di riferimento . . . . . . . . . . . . . . . . 53

20.3 Proiezione della velocità . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

20.4 Applicazione — Massa vincolata a una superficie . . . . . . . . . . . . . . 53

21 Campo di forza peso con massa–molla — Applicazione . . . . . . . . . . . . . . . 55

21.1 Modello della molla ideale . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

21.2 Equazione del moto nel primo sistema di riferimento . . . . . . . . . . . . 55

21.3 Equazione del moto nel secondo sistema di riferimento . . . . . . . . . . . 56

21.4 Soluzione dell’equazione dell’oscillatore armonico . . . . . . . . . . . . . . 56

21.5 Analisi delle componenti residue . . . . . . . . . . . . . . . . . . . . . . . 57

22 Esempio di cinematica del punto materiale . . . . . . . . . . . . . . . . . . . . . . 57

23 Gradi di libertà . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

23.1 Vincoli ideali . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5



NOTESTOBOOK

1 Cinematica e dinamica del punto materiale

2 Punto materiale soggetto a forza di natura inerziale

Lo studio della meccanica del punto materiale prende avvio dall’analisi del caso più elementare:
un punto soggetto ad una forza proporzionale alla propria massa attraverso un vettore acce-
lerazione costante nel tempo e uniforme nello spazio. Comprendere a fondo questo problema
significa padroneggiare il moto uniformemente accelerato in tutta la sua generalità vettoriale,
fondamento su cui si costruisce l’intera cinematica.

Per forza di natura inerziale si intende una forza della forma mα⃗, dove m è la massa del
punto materiale e α⃗ è un vettore accelerazione costante (non varia nel tempo) e uniforme (non
varia nello spazio). L’equazione del moto associata a tale fenomeno è

ma⃗ = mα⃗ , (1)

da cui, semplificando la massa,
a⃗ = α⃗ . (2)

L’equazione (1) è un’equazione differenziale vettoriale, ordinaria, lineare, a coefficienti costanti
e non omogenea. La sua risoluzione può essere condotta con due metodi distinti, entrambi
istruttivi.

2.1 Metodo 1: integrazione diretta

Si sceglie un sistema di riferimento cartesiano R(O, î1, î2, î3).

Figura 1: Sistema di riferimento cartesiano con i tre versori ortonormali î1, î2, î3.

L’equazione vettoriale (2) si decompone in tre equazioni scalari indipendenti:
ẍ1 = α1

ẍ2 = α2

ẍ3 = α3

(3)

Consideriamo la prima componente. Integrando nel tempo tra t0 e t:∫ t

t0

ẍ1(τ) dτ =

∫ t

t0

α1 dτ =⇒ ẋ1(t)− ẋ1(t0) = α1 (t− t0) . (4)
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Integrando una seconda volta:∫ t

t0

[
ẋ1(τ)− ẋ1(t0)

]
dτ =

∫ t

t0

α1 (τ − t0) dτ , (5)

da cui
x1(t)− x1(t0)− ẋ1(t0) (t− t0) =

α1

2
(t− t0)

2 .

Imponendo t0 = 0 si ottiene la forma compatta

x1(t) = x1(0) + ẋ1(0) t+
1

2
α1 t

2 . (6)

Ripetendo il medesimo procedimento per le componenti x2 e x3 si perviene al sistema
x1(t) = x1(0) + ẋ1(0) t+

1

2
α1 t

2

x2(t) = x2(0) + ẋ2(0) t+
1

2
α2 t

2

x3(t) = x3(0) + ẋ3(0) t+
1

2
α3 t

2

(7)

che, ricomposto in forma vettoriale, fornisce la legge del moto del punto materiale libero
nello spazio:

x⃗(t) = x⃗(0) + ˙⃗x(0) t+
1

2
α⃗ t2 . (8)

Interpretazione fisica. L’equazione (8) mostra che il moto sotto accelerazione costante è
completamente determinato una volta assegnate la posizione iniziale x⃗(0) e la velocità iniziale
˙⃗x(0). Il termine quadratico in t è responsabile della curvatura della traiettoria: in assenza di
esso (α⃗ = 0⃗) il moto sarebbe rettilineo uniforme. Nelle applicazioni più comuni si pone α⃗ = g⃗,
dove g⃗ è l’accelerazione di gravità1.

2.2 Metodo 2: soluzione dell’equazione differenziale tramite omogenea e
particolare

Si considera l’equazione omogenea associata a (2):

¨⃗x = 0⃗ . (9)

In componenti scalari ciascuna equazione ẍk = 0 (k = 1, 2, 3) ammette l’equazione caratteristica
γ2 = 0, le cui radici sono γ1,2 = 0, reali e coincidenti (molteplicità µ = 2). La soluzione generale
dell’omogenea per ciascuna componente è pertanto

xGOk
(t) = ak e

0·t + bk t e
0·t = ak + bk t , k = 1, 2, 3 ,

che in forma vettoriale diviene
x⃗GO(t) = a⃗+ b⃗ t , (10)

dove a⃗ = (a1, a2, a3) e b⃗ = (b1, b2, b3) sono vettori costanti arbitrari.

Per la soluzione particolare si cerca una funzione della forma

x⃗PN (t) = tµ eβt
[
A⃗(t) cos(δt) + B⃗(t) sin(δt)

]
. (11)

1Nella realtà il vettore g⃗ non è rigorosamente costante né uniforme, poiché dipende dalla posizione sulla
superficie terrestre e dalla quota. Tuttavia, per moti che si sviluppano su scale spaziali piccole rispetto al raggio
terrestre, l’approssimazione g⃗ = cost. è eccellente.
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Poiché il termine non omogeneo è il vettore costante α⃗, si ha β = 0, δ = 0, A⃗(t) = A⃗ = cost.,
B⃗ = 0⃗. Inoltre, essendo γ = 0 radice dell’equazione caratteristica con molteplicità µ = 2, la
soluzione particolare assume la forma

x⃗PN (t) = t2 A⃗ .

Derivando:
˙⃗xPN (t) = 2t A⃗ , ¨⃗xPN (t) = 2A⃗ .

Sostituendo nell’equazione differenziale ¨⃗x = α⃗ si ottiene

2A⃗ = α⃗ =⇒ A⃗ =
α⃗

2
. (12)

La soluzione generale è dunque
x⃗(t) = a⃗+ b⃗ t+

1

2
α⃗ t2 , (13)

che, imponendo le condizioni iniziali x⃗(0) = x⃗0 e ˙⃗x(0) = v⃗0, restituisce

x⃗(t) = x⃗0 + v⃗0 t+
1

2
α⃗ t2 , (14)

in perfetto accordo con il risultato (8) ottenuto per integrazione diretta.

3 Cinematica del punto materiale — Legge oraria

La descrizione cinematica di un punto materiale richiede la definizione precisa di alcune gran-
dezze fondamentali: il vettore posizione, la traiettoria, l’ascissa curvilinea e le grandezze da esse
derivate (velocità, accelerazione). In questa sezione si introducono tali concetti e si costruisce
progressivamente la terna intrinseca della traiettoria.

3.1 Vettore posizione e traiettoria

Fissato un sistema di riferimento R(O, î1, î2, î3), il vettore posizione r⃗(t) = O⃗P (t) individua,
istante per istante, la posizione P del punto materiale. La traiettoria è l’insieme dei luoghi dei
punti occupati dal punto materiale durante l’intervallo di osservazione. Ad essa si può associare
un’origine Ω e un’ascissa curvilinea s.

La posizione del punto materiale al variare del tempo può essere espressa attraverso la dipendenza
parametrica dall’ascissa curvilinea:

r⃗
(
s(t)

)
=


x = x(s)

y = y(s)

z = z(s)

(15)

dove s(t) rappresenta la lunghezza dell’arco di curva misurata a partire dall’origine Ω della
traiettoria.

Per ascissa curvilinea (o legge oraria) si intende la funzione scalare s(t) che fornisce la
posizione del punto lungo la traiettoria in funzione del tempo. Si distingue dall’equazione del
moto r⃗(t), che è invece una funzione vettoriale e definisce, istante per istante, la posizione del
vettore posizione nello spazio:

r⃗(t) =


x = x(t)

y = y(t)

z = z(t)

(16)
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3.2 Vettore spostamento, velocità e accelerazione

Il vettore spostamento ∆r⃗ è definito come la differenza tra due posizioni consecutive:

∆r⃗ = O⃗P
′ − O⃗P = P⃗P

′
. (17)

La velocità media (o globale) è il rapporto

v⃗m =
O⃗P

′ − O⃗P

t′ − t
=

∆r⃗

∆t
. (18)

La velocità istantanea si ottiene nel limite ∆t→ 0:

v⃗(t) = lim
∆t→0

∆r⃗(t)

∆t
= lim

∆t→0

r⃗(t+∆t)− r⃗(t)

∆t
=
dr⃗(t)

dt
. (19)

Geometricamente, al tendere di ∆t a zero il punto P ′ tende a P e la secante PP ′ tende alla
tangente alla traiettoria in P : il vettore velocità è dunque sempre tangente alla traiettoria.

Figura 2: Costruzione geometrica della velocità istantanea: al tendere di P ′ a P la secante PP ′

diviene tangente alla traiettoria. Sono indicati i vettori r⃗(t) e r⃗(t+∆t).

L’accelerazione istantanea è definita in modo analogo:

a⃗(t) = lim
∆t→0

v⃗(t+∆t)− v⃗(t)

∆t
=
dv⃗(t)

dt
. (20)

3.3 Versore tangente

Si definisce versore tangente il vettore unitario ottenuto derivando il vettore posizione rispetto
all’ascissa curvilinea:

t̂ = lim
∆s→0

r⃗(s+∆s)− r⃗(s)

∆s
=
dr⃗

ds
. (21)

Il versore t̂ è tangente alla traiettoria nel punto individuato da s(t). Per verificare che il suo
modulo sia effettivamente unitario, si osserva che∥∥t̂∥∥ = lim

∆s→0

∥∆r⃗∥
|∆s|

= 1 , (22)

poiché, per definizione di ascissa curvilinea, quando ∆s → 0 la lunghezza della corda ∥∆r⃗∥
coincide con la lunghezza dell’arco |∆s|2.

2Il valore assoluto |∆s| tiene conto del fatto che l’ascissa curvilinea potrebbe essere percorsa nel verso delle s
decrescenti.
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Figura 3: Costruzione del versore tangente t̂(s) a partire dal rapporto incrementale del vettore
posizione rispetto all’ascissa curvilinea.

3.4 Versore normale e curvatura

Un secondo versore fondamentale si ottiene derivando t̂ rispetto all’ascissa curvilinea:

dt̂

ds
=
d2r⃗(s)

ds2
. (23)

Sviluppando il limite si ha

dt̂

ds
= lim

∆s→0

t̂(s+∆s)− t̂(s)

∆s
= lim

∆s→0

∆t̂

∆s
. (24)

La derivata seconda del vettore posizione rispetto a s può essere interpretata anche come

d2r⃗

ds2
= lim

∆s→0

r⃗(s+ 2∆s)− 2 r⃗(s+∆s) + r⃗(s)

∆s2
. (25)

Figura 4: I tre punti r⃗(s), r⃗(s+∆s), r⃗(s+2∆s) definiscono, al limite ∆s→ 0, il piano osculatore
e il cerchio osculatore di centro C e raggio R. Il versore n̂ è orientato da P verso il centro di
curvatura C.

I tre punti r⃗(s), r⃗(s+∆s) e r⃗(s+ 2∆s), al limite ∆s→ 0, definiscono il piano osculatore e il
cerchio osculatore, il quale ha centro nel centro di curvatura C della curva in P e raggio R
detto raggio di curvatura. Il versore orientato da P al centro di curvatura è il versore normale
n̂. Per ∆s → 0 il vettore ∆t̂ tende ad allinearsi con la retta congiungente P e il centro di
curvatura.
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Dimostrazione dell’ortogonalità tra t̂ e dt̂/ds. Poiché t̂ è un versore, vale identicamente

t̂(s) · t̂(s) = 1 . (26)

Derivando rispetto a s e applicando la regola di derivazione del prodotto scalare3:

d

ds

[
t̂(s) · t̂(s)

]
= 2

dt̂(s)

ds
· t̂(s) = d(1)

ds
= 0 . (27)

Essendo il prodotto scalare nullo e, nel caso di traiettoria non rettilinea, dt̂/ds ̸= 0⃗, si conclude
che

t̂(s) ⊥ dt̂(s)

ds
. (28)

Si esclude il caso di traiettoria rettilinea, per il quale dt̂/ds = 0⃗ e il versore normale non è
definito.

Relazione con il raggio di curvatura. Si definisce il versore n̂ attraverso la relazione

dt̂(s)

ds
=

∥∥∥∥dt̂(s)ds

∥∥∥∥ n̂ . (29)

Ricordando che l’arco di curva e l’angolo sotteso sono legati da ds = Rdθ, si ha∥∥∥∥ dt̂ds
∥∥∥∥ =

∥∥∥∥ dt̂

R dθ

∥∥∥∥ =
1

R

∥∥∥∥ dt̂dθ
∥∥∥∥ . (30)

Nel limite ∆s→ 0 si ottiene ∥dt̂∥ ≈ dθ, ossia ∥dt̂/dθ∥ → 14, e pertanto il risultato fondamentale
è

dt̂(s)

ds
=
n̂

R
. (31)

Interpretazione fisica. L’equazione (31), nota come prima formula di Frenet–Serret, stabi-
lisce che il modulo di dt̂/ds è inversamente proporzionale al raggio di curvatura R: curve molto
“strette” (piccolo R) producono variazioni rapide della direzione tangente. La direzione di dt̂/ds
coincide con quella del versore normale n̂, il cui verso punta sempre dal punto P verso il centro
di curvatura C.

3.5 Curvatura di una curva piana

Nel caso bidimensionale, una curva è descritta da y = f(x) in un sistema di riferimento
R(O, î, ĵ). Il vettore posizione è

r⃗ = x î+ f(x) ĵ . (32)

L’elemento di arco ds si ottiene dal teorema di Pitagora applicato a spostamenti infinitesimi:

ds =
√

(dx)2 + (dy)2 =
√

1 + f ′2(x) dx , (33)

da cui
ds

dx
=
√

1 + f ′2(x) e dx

ds
=

1√
1 + f ′2(x)

. (34)

3Ricordiamo che, dati due vettori u⃗(s) e w⃗(s), si ha d
ds
[u⃗ · w⃗] = du⃗

ds
· w⃗ + u⃗ · dw⃗

ds
, dove la derivata di un vettore

si calcola componente per componente: du⃗
ds

= du1
ds

î1 +
du2
ds

î2 +
du3
ds

î3.
4Questo risultato discende dal fatto che, per piccole rotazioni, la variazione di un versore ha modulo pari

all’angolo di rotazione stesso (in radianti).
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Figura 5: Elemento infinitesimo di arco ds come ipotenusa del triangolo rettangolo di cateti dx
e dy = f ′(x) dx lungo la curva y = f(x).

Il versore tangente nel caso 2D si scrive

t̂ =
dr⃗

ds
=
dx

ds
î+

df(x)

ds
ĵ , (35)

ovvero, in forma algebrica,

t =

(
tx
ty

)
=


1√

1 + f ′2

f ′(x)√
1 + f ′2

 , (36)

avendo utilizzato la regola della catena df
ds = df

dx · dx
ds = f ′(x) · 1√

1+f ′2
.

Per ottenere dt̂/ds si calcolano le derivate delle componenti tx e ty rispetto a x, moltiplicandole
poi per dx/ds:

dt̂

ds
=


dtx
dx

· dx
ds

dty
dx

· dx
ds

 . (37)
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Le derivate necessarie sono:

d

dx

(
1√

1 + f ′2

)
= − f ′ f ′′

(1 + f ′2)3/2
, (38)

d

dx

(
f ′√

1 + f ′2

)
=

f ′′

(1 + f ′2)3/2
. (39)

La norma di dt̂/ds fornisce la curvatura κ della curva piana:

κ =

∥∥∥∥ dt̂ds
∥∥∥∥ =

|f ′′|
(1 + f ′2)3/2

, (40)

e il raggio di curvatura è R = 1/κ.

3.6 Terna intrinseca della traiettoria

Dati il versore tangente t̂ e il versore normale n̂, si definisce il versore binormale come

b̂ = t̂× n̂ , (41)

in modo che la terna (t̂, n̂, b̂) costituisca una terna destrorsa.

Figura 6: Terna intrinseca (o triedro di Frenet–Serret) in un punto della traiettoria: t̂ tangente,
n̂ normale (verso il centro di curvatura), b̂ = t̂× n̂ binormale.

La terna intrinseca dipende esclusivamente dalle caratteristiche geometriche della traiettoria e
si muove solidalmente con il punto materiale lungo di essa.

4 Caratteristiche locali del moto

Il vettore posizione x⃗(t) può essere espresso come funzione composta x⃗(s(t)), dove s(t) è l’ascissa
curvilinea.
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Figura 7: Terna intrinseca (t̂, n̂, b̂) rappresentata lungo una curva nello spazio tridimensionale.

4.1 Vettore velocità in coordinate intrinseche

Applicando la regola della catena5:

v⃗(t) =
dx⃗(t)

dt
=
dx⃗

ds

ds

dt
= ṡ t̂ , (42)

dove ṡ = ds/dt è la velocità scalare. Il vettore velocità ha dunque direzione e verso determinati
dal versore tangente t̂ e intensità pari a |ṡ|.

4.2 Vettore accelerazione in coordinate intrinseche

Derivando il vettore velocità rispetto al tempo e applicando la regola di derivazione del prodotto6

e nuovamente la regola della catena:

a⃗(t) =
dv⃗

dt
=

d

dt

(
ṡ t̂
)
= s̈ t̂+ ṡ

dt̂

dt

= s̈ t̂+ ṡ
dt̂

ds

ds

dt
= s̈ t̂+ ṡ

n̂

R
ṡ , (43)

dove si è utilizzata la relazione (31). Il risultato fondamentale è

a⃗(t) = s̈ t̂+
ṡ2

R
n̂ = a⃗T + a⃗N . (44)

Interpretazione fisica. L’accelerazione si decompone in due contributi con significato fisico
distinto:

• La componente tangenziale a⃗T = s̈ t̂ è responsabile della variazione dell’intensità della
velocità. Ha direzione tangente alla traiettoria e intensità |s̈|.

• La componente normale (o centripeta) a⃗N = (ṡ2/R) n̂ è responsabile della variazione
della direzione della velocità. Ha direzione normale alla traiettoria, verso il centro di
curvatura, e intensità ṡ2/R.

Mentre il vettore velocità è sempre tangente alla traiettoria, l’accelerazione in generale non lo
è, essendo la somma vettoriale di a⃗T e a⃗N .

5Regola della catena: D[f(g(t))] = f ′(g(t)) · g′(t), ovvero df
dt

= df
dg

· dg
dt

.
6Regola del prodotto: d

dt
[f(t) g(t)] = f ′(t) g(t) + f(t) g′(t).
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Casi particolari.

1. Se s̈ = 0 il punto percorre archi di curva uguali in tempi uguali (moto uniforme lungo la
traiettoria); l’accelerazione è puramente normale.

2. Se s̈ ̸= 0 la velocità scalare varia nel tempo e il moto è non uniforme.

3. Se R→ ∞ la traiettoria è rettilinea e a⃗N → 0⃗: l’accelerazione è puramente tangenziale.

4. Se R ̸= ∞ e ṡ ̸= 0 il punto si muove su una curva ed è “attirato” verso il centro di curvatura
dalla componente normale dell’accelerazione.

5 Pendolo semplice — Oscillatore non forzato

Il pendolo semplice costituisce uno dei modelli fondamentali della meccanica: pur nella sua
semplicità, introduce il concetto di vincolo e conduce a un’equazione del moto non lineare di
grande rilevanza.

Figura 8: Schema del pendolo semplice: massa puntiforme m vincolata all’estremità di un’asta
rigida di lunghezza ℓ, incernierata nel punto O. L’angolo θ è misurato rispetto alla verticale.
Sono indicati i versori t̂ e n̂ della terna intrinseca e la forza peso.

Per definire il modello si assumono le seguenti ipotesi:

• La massa m è puntiforme.

• L’asta che collega m al punto di sospensione O è ideale: inestensibile, indeformabile e priva
di massa.

• Nel punto O è presente una cerniera che permette la libera rotazione dell’asta.

• Il problema è piano: agiscono la forza peso e la reazione vincolare dell’asta.

• L’unico grado di libertà è l’angolo θ che l’asta forma con la verticale passante per O.

Poiché il punto m rimane sempre a distanza ℓ dal centro O, la traiettoria è un arco di circonfe-
renza di raggio

R = ℓ . (45)
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Si fissa un sistema di riferimento R(O, î, ĵ, k̂) con origine in O. Il vettore posizione del punto
materiale nel piano è

r⃗ = x î+ y ĵ . (46)

L’ascissa curvilinea è legata all’angolo θ dalla relazione

s = ℓ θ , (47)

e le componenti cartesiane del vettore posizione si esprimono come7:x = ℓ sin θ

y = ℓ cos θ
(48)

Figura 9: Geometria del pendolo: il punto materiale si muove su un arco di cerchio di raggio
R = ℓ. L’angolo θ è misurato dalla verticale e le componenti x = ℓ sin θ, y = ℓ cos θ sono indicate.

6 Dinamica del pendolo semplice

Il problema del pendolo semplice, introdotto dal punto di vista cinematico, richiede ora un’analisi
dinamica completa. Si tratta di determinare l’equazione del moto di un punto materiale di massa
m vincolato a muoversi lungo una traiettoria circolare di raggio ℓ, sotto l’azione della gravità.
Questo problema, apparentemente elementare, introduce concetti fondamentali quali i gradi di
libertà, le reazioni vincolari e la linearizzazione delle equazioni del moto.

6.1 Vettore posizione e ascissa curvilinea

Con riferimento a un sistema di assi cartesiani con origine nel centro della traiettoria circola-
re e versore ĵ diretto verso l’alto, il vettore posizione del punto materiale che si muove sulla

7La scelta x = ℓ sin θ e y = ℓ cos θ (anziché le più consuete x = ℓ cos θ, y = ℓ sin θ) discende dal fatto che
l’angolo θ è misurato a partire dalla verticale discendente.
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circonferenza di raggio ℓ si scrive come8:

r⃗ = ℓ sin θ î− ℓ cos θ ĵ = r⃗(θ). (49)

Figura 10: Punto materiale su traiettoria circolare di raggio ℓ. L’angolo θ è misurato dalla
verticale; le componenti cartesiane x = ℓ sin θ e y = −ℓ cos θ e l’ascissa curvilinea s sono indicate.

In questo caso il vettore posizione dipende dal solo parametro θ, ma può essere espresso anche
in funzione dell’ascissa curvilinea s. Ricordando la relazione s = ℓ θ, si ha:

r⃗(s) :

x(s) = ℓ sin
s

ℓ
,

y(s) = −ℓ coss
ℓ
.

(50)

6.2 Gradi di libertà e vincoli

La traiettoria circolare assegnata costituisce un vincolo di tipo unidimensionale: il punto ma-
teriale di massa m non può muoversi liberamente nello spazio, ma è costretto a percorrere la
circonferenza di raggio ℓ e centro O. La possibilità di muoversi lungo quest’unica curva si espri-
me dicendo che il sistema possiede un grado di libertà. In altri termini, è sufficiente un solo
parametro sia esso s oppure θ per determinare univocamente la posizione del punto materiale.

Definizione (Numero di gradi di libertà). Il numero di gradi di libertà di un sistema
meccanico è il numero di parametri indipendenti necessari per determinare univocamente la
posizione del sistema nello spazio. Un punto materiale libero in uno spazio tridimensionale
possiede tre gradi di libertà; il pendolo semplice, vincolato alla traiettoria circolare, ne possiede
uno solo.

Il problema meccanico è dunque risolto quando si determina un’equazione oraria del tipo s(t)
oppure θ(t), essendo le due quantità legate dalla relazione s(t) = ℓ θ(t). Il problema si riduce
pertanto a un’equazione differenziale scalare nell’incognita θ(t).

6.3 Bilancio delle forze e proiezione cartesiana

Si applica la seconda legge di Newton al punto materiale:

ma⃗ = P⃗ + R⃗, (51)

dove P⃗ = −mg ĵ è la forza peso e R⃗ è la reazione vincolare, diretta normalmente alla traiettoria
nel punto in cui si trova il punto materiale.

8Il segno negativo nella componente lungo ĵ deriva dalla scelta dell’angolo θ misurato a partire dalla verticale
discendente, cosicché per θ = 0 il punto si trova nella posizione più bassa.
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Scelto un sistema di riferimento R(O, î, ĵ, k̂), l’accelerazione si decompone come a⃗ = ẍ î+ÿ ĵ+z̈ k̂.
Proiettando l’equazione (51) lungo i tre versori si ottiene:

mẍ = Rx,

mÿ = −mg +Ry,

0 = Rz,

(52)

dove si è sfruttato il fatto che il moto avviene nel piano (x, y), cosicché z̈ = 0 e la componente Rz

è nulla. Il sistema si riduce quindi a due equazioni scalari. Sostituendo le espressioni cinematiche
x = ℓ sin θ e y = −ℓ cos θ, si possono esprimere le accelerazioni in funzione di θ e delle sue derivate
temporali.

6.4 Proiezione sulla terna intrinseca

La proiezione sugli assi cartesiani non è necessariamente la scelta più conveniente. Un’alternativa
efficace consiste nel proiettare l’equazione del moto sulla terna intrinseca (ê, n̂, b̂), dove ê è
il versore tangente alla traiettoria, n̂ il versore normale (diretto verso il centro di curvatura) e
b̂ = ê× n̂ il versore binormale. Proiettando l’equazione (51) si ottiene:

ms̈ = −mg sin θ,

m
ṡ2

ℓ
= −mg cos θ +RN ,

(53)

avendo osservato che la componente binormale è identicamente nulla (ab = 0, Pb = 0, Rb = 0)9.
Si dice che il sistema è disaccoppiato se in ciascuna equazione compare una sola delle funzioni
incognite.

Ricordando che s = ℓ θ, e dunque ṡ = ℓ θ̇ e s̈ = ℓ θ̈, il sistema (53) diventa:mℓ θ̈ = −mg sin θ, (A)

mℓ θ̇2 = −mg cos θ +RN . (B)
(54)

Si osservi che l’equazione (A) è un’equazione differenziale non lineare omogenea: la non
linearità deriva dal fatto che θ(t) compare come argomento della funzione trigonometrica sin θ.
L’equazione (B) è invece non lineare e non omogenea, poiché contiene l’incognita ausiliaria
RN (la reazione vincolare normale) che non è nota a priori. La strategia risolutiva consiste
nel risolvere dapprima l’equazione (A) per determinare θ(t), e successivamente ricavare RN

dall’equazione (B).

Interpretazione fisica. L’equazione (A) esprime il bilancio delle forze nella direzione tangen-
te alla traiettoria: l’unica componente attiva è la proiezione tangenziale del peso, −mg sin θ, che
agisce come forza di richiamo. L’equazione (B) rappresenta il bilancio nella direzione normale
(centripeta): la reazione vincolare RN deve bilanciare sia la componente centripeta dell’accelera-
zione sia la proiezione radiale del peso. Il fatto che un solo grado di libertà sia sufficiente implica
che basta una sola equazione differenziale l’equazione (A) per determinare completamente il
moto; la seconda equazione fornisce poi la reazione vincolare.

9Ciò è conseguenza del fatto che il moto è piano: non vi è accelerazione né forza nella direzione ortogonale al
piano del pendolo.
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6.5 Linearizzazione dell’equazione del moto

L’equazione (A) del sistema (54), pur descrivendo esattamente la dinamica del pendolo, non
ammette soluzione in forma chiusa elementare a causa della non linearità introdotta da sin θ.
Per ottenere una soluzione analitica è necessario procedere a una linearizzazione.

Figura 11: Illustrazione del concetto di linearizzazione: la funzione sin θ viene approssimata
dalla retta tangente nell’intorno del punto di lavoro θ0. L’approssimazione è valida nell’intervallo
[θmin, θmax] entro il quale l’errore resta inferiore alla tolleranza ε prescelta.

Linearizzare significa sostituire una funzione non lineare con la sua approssimazione lineare (retta
tangente) in un intorno di un punto di lavoro. Ciò è lecito soltanto sotto precise condizioni:

• si deve specificare il punto θ0 attorno al quale si effettua l’approssimazione;

• si deve garantire che la variabile θ resti confinata in un intervallo [θmin, θmax] sufficiente-
mente piccolo;

• l’errore introdotto, | sin θ − t(θ)| ≤ ε, deve essere inferiore a una tolleranza accettabile.

Lo strumento formale è la serie di Taylor della funzione f(x) nell’intorno di x0:

f(x) =

∞∑
k=0

f (k)(x0)

k!
(x− x0)

k. (55)

La serie converge al valore della funzione; troncandola al primo ordine si ottiene l’approssima-
zione lineare (retta tangente):

f(x) ≈ f(x0) + f ′(x0)(x− x0). (56)

Applicando questa relazione alla funzione sin θ con punto di sviluppo θ0 = 0:

sin θ ≈ sin 0 + cos 0 (θ − 0) = θ. (57)

Questa approssimazione, nota come approssimazione per piccole oscillazioni, è valida quan-
do l’ampiezza angolare del moto è sufficientemente piccola10. È fondamentale sottolineare che
non è sempre lecito effettuare una linearizzazione di questo tipo: occorre sempre verificare
preventivamente che le ipotesi di piccole oscillazioni siano soddisfatte.

Sostituendo sin θ ≈ θ nell’equazione (A) del sistema (54):

mℓ θ̈ = −mg θ =⇒ θ̈ +
g

ℓ
θ = 0. (58)

Questa è l’equazione del pendolo semplice linearizzato: un’equazione differenziale lineare
omogenea del secondo ordine a coefficienti costanti.

10In pratica, l’errore relativo dell’approssimazione sin θ ≈ θ resta inferiore all’1% per |θ| ≲ 0,24 rad ≈ 14◦.
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6.6 Soluzione dell’equazione linearizzata

L’equazione caratteristica associata alla (58) è:

χ2 +
g

ℓ
= 0 =⇒ χ1,2 = ±

√
−g
ℓ
. (59)

Poiché g/ℓ > 0, il discriminante è negativo e le radici sono complesse coniugate:

χ1,2 = ±j ω, ω =

√
g

ℓ
, (60)

dove ω è la pulsazione naturale del sistema (frequenza angolare di oscillazione). La soluzione
generale è dunque:

θ(t) = C1 e
−jωt + C2 e

jωt. (61)

Utilizzando la formula di Eulero e imponendo le condizioni iniziali θ(0) = θ0 e θ̇(0) = θ̇0, si
ottiene la soluzione in forma reale:

θ(t) = θ0 cos(ωt) +
θ̇0
ω

sin(ωt). (62)

Interpretazione fisica. La soluzione (62) descrive un moto oscillatorio armonico: il pendolo
oscilla indefinitamente attorno alla posizione di equilibrio con pulsazione ω =

√
g/ℓ, che dipende

unicamente dalla lunghezza del pendolo e dall’accelerazione di gravità, e non dalla massa. Il
primo termine rappresenta l’oscillazione dovuta allo spostamento iniziale θ0, il secondo quella
dovuta alla velocità angolare iniziale θ̇0.

6.7 Determinazione della reazione vincolare

Una volta nota θ(t) dalla (62), si ricava la velocità angolare:

θ̇(t) = ω

(
−θ0 sin(ωt) +

θ̇0
ω

cos(ωt)

)
. (63)

Sostituendo nell’equazione (B) del sistema (54), si determina la reazione vincolare normale:

RN = mℓ θ̇2 +mg cos θ. (64)

Si conferma così che, disponendo di un solo grado di libertà, è sufficiente una sola equazione
differenziale per determinare la funzione incognita θ(t); la seconda equazione scalare fornisce poi
la reazione vincolare RN .

6.8 Pendolo semplice inclinato

Si consideri ora una variante del problema precedente: la guida circolare di raggio ℓ è inclinata
di un angolo α rispetto al piano verticale. La massa m non giace più su un piano verticale, ma
è vincolata a una traiettoria circolare il cui piano forma un angolo α con la verticale.

Tale configurazione comporta che la reazione vincolare R⃗ possieda componenti sia nella direzione
n̂ sia nella direzione b̂: essa è la composizione di due vettori con direzioni date da n̂ e b̂11.

11Si può osservare che la proiezione della traiettoria circolare inclinata su un piano verticale è un’ellisse; al
crescere dell’angolo di inclinazione α, l’ellisse degenera progressivamente in un segmento.
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Figura 12: Pendolo semplice inclinato: la guida circolare di raggio ℓ è inclinata di un angolo α
rispetto alla verticale. Le forze agenti sono il peso P⃗ = mg⃗ e la reazione vincolare R⃗. La terna
intrinseca (ê, n̂, b̂) è indicata; il versore b̂ non è ortogonale al piano del foglio.

Proiettando l’equazione ma⃗ = P⃗ + R⃗ sulla terna intrinseca (ê, n̂, b̂):
ms̈ = P⃗ · ê = 0,

m
ṡ2

ℓ
= −mg cosα+RN ,

0 = −mg sinα+Rb.

(65)

Si osservi che, a differenza del pendolo verticale, compaiono ora due reazioni vincolari incognite:
RN (componente normale) e Rb (componente binormale). La componente Rb è necessaria per
impedire alla massa di uscire dal piano inclinato della guida e risulta tanto maggiore quanto più
grande è l’angolo di inclinazione α. Le quantità RN e Rb costituiscono le incognite ausiliarie del
problema.

Interpretazione fisica. Nel pendolo verticale la reazione vincolare è puramente radiale (lun-
go n̂), poiché il piano del moto contiene la direzione della gravità. Quando la guida è inclinata,
la gravità possiede una componente ortogonale al piano del moto (lungo b̂), che deve essere bi-
lanciata da una corrispondente componente della reazione vincolare. Questo spiega la comparsa
di Rb.

7 Vincoli scabri

Nella trattazione precedente si è implicitamente assunto che il vincolo fosse liscio, ossia privo
di attrito nella direzione tangenziale. Si considera ora il caso di un vincolo scabro, nel quale
esiste una resistenza allo scorrimento del punto nella direzione consentita dal vincolo, cioè nella
direzione tangenziale12.

Si distinguono due regimi. In condizioni statiche, la reazione tangenziale R⃗t si oppone esatta-
mente alla forza tangenziale applicata e la sua intensità non supera un valore limite proporzionale
alla reazione normale:

|R⃗t| ≤ ϕs |R⃗N | =⇒ R⃗t = −F⃗t, (66)

dove ϕs è il coefficiente di attrito statico, che dipende dalla natura dei materiali a contatto.
12Quella che segue è una trattazione semplificata del fenomeno dell’attrito; modelli più raffinati sono disponibili

nella letteratura specializzata.
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Figura 13: Modello di attrito: la reazione tangenziale Rt in funzione della forza tangenziale ap-
plicata Ft. Nel tratto crescente (regime statico) la reazione eguaglia la forza applicata; superata
la soglia ϕs|RN | si passa al regime dinamico, in cui la reazione tangenziale si riduce al valore
ϕd|RN |.

Quando la forza tangenziale applicata supera la soglia ϕs |R⃗N |, il vincolo non riesce più a man-
tenere le condizioni statiche e si passa alle condizioni dinamiche. In questo regime la reazione
tangenziale assume il valore:

|R⃗t| = ϕd |R⃗N |, ϕd < ϕs, (67)

dove ϕd è il coefficiente di attrito dinamico. La direzione della reazione tangenziale è opposta
a quella della velocità di scorrimento:

R⃗t = −ϕd |R⃗N | û, (68)

essendo û il versore della velocità del punto materiale.

Figura 14: Cono d’attrito: la reazione vincolare totale R⃗ deve restare all’interno del cono di
semiangolo α affinché il sistema permanga in condizioni statiche. L’asse del cono coincide con
la direzione della reazione normale R⃗N .

Il concetto di cono d’attrito fornisce un’interpretazione geometrica elegante. Si definisce α
come l’angolo che la reazione vincolare totale R⃗ forma con la normale alla superficie di contatto.
In condizioni statiche:

|R⃗t|
|R⃗N |

≤ ϕs =⇒ tanα ≤ ϕs =⇒ α ≤ arctan(ϕs). (69)

Finché la reazione vincolare R⃗ resta all’interno del cono di semiangolo arctan(ϕs) il sistema per-
mane in condizioni statiche; quando R⃗ raggiunge la superficie del cono, si innesca lo scorrimento
e si passa al regime dinamico. La simmetria circolare della sezione del cono indica che l’attrito
statico agisce in modo isotropo, ossia è valido per ogni direzione tangenziale.
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Figura 15: Rappresentazione laterale del cono d’attrito: la reazione vincolare R⃗ forma un angolo
α con la normale alla superficie. Finché α ≤ arctan(ϕs) il sistema è in equilibrio statico.

Figura 16: Sezione trasversale del cono d’attrito vista dall’alto: la simmetria circolare indica
che l’attrito statico è valido per ogni direzione tangenziale.

8 Conservatività, potenzialità e irrotazionalità

Si introduce ora lo studio delle proprietà fondamentali dei campi vettoriali, con particolare
riferimento ai concetti di conservatività, potenzialità e irrotazionalità. Queste nozioni rivestono
un ruolo centrale nella meccanica, poiché permettono di classificare le forze e di introdurre il
concetto di energia potenziale.

Sia v⃗(x⃗) un campo vettoriale definito in un dominio D ⊂ R3, con x⃗ ∈ D. Ad esempio, la funzione
velocità v⃗(x⃗) definisce un campo vettoriale che associa a ogni punto dello spazio un vettore.

8.1 Campo vettoriale conservativo

Definizione (Conservatività). Un campo vettoriale v⃗(x⃗) si dice conservativo nel dominio
D se la sua circuitazione lungo qualsiasi curva chiusa C contenuta in D è nulla:∮

C
v⃗(x⃗) · dx⃗ = 0 ∀C ⊂ D. (70)

In altre parole, il campo è conservativo se l’integrale di linea lungo qualsiasi circuito chiuso
formato da punti appartenenti al dominio è identicamente nullo.

Per comprendere le conseguenze di questa definizione, si consideri un circuito generico C nel
dominio D e si scelgano due punti qualsiasi x⃗0 e x⃗1 lungo di esso, suddividendo così C in due
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Figura 17: Circuito chiuso C suddiviso in due cammini C1 (da x⃗0 a x⃗1) e C2 (da x⃗1 a x⃗0). Se il
campo è conservativo, gli integrali di linea lungo i due cammini sono uguali in modulo e opposti
in segno.

cammini distinti C1 (da x⃗0 a x⃗1) e C2 (da x⃗1 a x⃗0). Dalla condizione di conservatività:∮
C
v⃗ · dx⃗ = 0 =⇒

∫
C1

v⃗ · dx⃗+

∫
C2

v⃗ · dx⃗ = 0, (71)

da cui: ∫
C1

v⃗ · dx⃗ = −
∫
C2

v⃗ · dx⃗. (72)

Figura 18: Circuito chiuso C suddiviso in tre cammini C1, C2 e C3. L’indipendenza dal cammino
implica che l’integrale di linea tra x⃗0 e x⃗1 è lo stesso lungo qualsiasi percorso.

Poiché il ragionamento vale per qualsiasi scelta dei cammini, si può introdurre un terzo percorso
C3 da x⃗0 a x⃗1 e verificare che: ∫

C1

v⃗ · dx⃗ =

∫
C3

v⃗ · dx⃗. (73)
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Si giunge così a una definizione equivalente di conservatività.

Definizione (Conservatività forma equivalente). Il campo vettoriale v⃗(x⃗) è conservativo

se e solo se l’integrale di linea
∫ x⃗1

x⃗0

v⃗ ·dx⃗ non dipende dal percorso seguito, ma solo dagli estremi

x⃗0 e x⃗1.

8.2 Potenzialità

Definizione (Potenzialità). Un campo vettoriale v⃗(x⃗) si dice potenziale se esiste una
funzione scalare φ(x⃗), detta funzione potenziale, tale che in ogni punto del dominio D:

v⃗(x⃗) = ∇φ(x⃗), (74)

dove il gradiente è definito come:

∇(•) = ∂(•)
∂x

î+
∂(•)
∂y

ĵ +
∂(•)
∂z

k̂. (75)

L’operatore gradiente associa a una funzione scalare un vettore le cui componenti sono le derivate
parziali del campo scalare lungo le tre direzioni coordinare.

Un risultato fondamentale stabilisce che un campo vettoriale è potenziale se e solo se è
conservativo. Le due proprietà sono dunque equivalenti13.

8.3 Irrotazionalità

Definizione (Irrotazionalità). Un campo vettoriale v⃗(x⃗) si dice irrotazionale nel dominio
D se:

∇× v⃗(x⃗) = 0⃗ ∀ x⃗ ∈ D. (76)

Il termine “rotore” rimanda al concetto di rotazione: considerando il moto di un corpo rigido,
esso può essere decomposto in una traslazione del baricentro e in una rotazione attorno ad esso.
Il rotore di un campo di velocità misura la tendenza locale del campo a indurre rotazione.

Figura 19: Decomposizione del moto di un corpo rigido in traslazione (TR) e rotazione (ROT).

8.4 Legami tra le definizioni

Si dimostrano ora i legami logici tra le tre proprietà introdotte.

Da potenzialità a irrotazionalità (B ⇒ C). Se il campo vettoriale v⃗(x⃗) è potenziale, allora
è anche irrotazionale. Infatti, se v⃗(x⃗) = ∇φ(x⃗), si ha:

∇× v⃗ = ∇× (∇φ) = 0⃗ ∀φ(x⃗) di classe C2, (77)

poiché il rotore del gradiente di qualsiasi funzione scalare sufficientemente regolare è identica-
mente nullo14.

13L’equivalenza vale in domini semplicemente connessi, come si preciserà nel seguito.
14Questa identità vettoriale segue dal teorema di Schwarz sull’uguaglianza delle derivate parziali miste:

∂2φ/∂xi∂xj = ∂2φ/∂xj∂xi.
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Da irrotazionalità a conservatività (C ⇒ A). Per dimostrare questa implicazione si intro-
duce il teorema di Stokes. Data una superficie S ⊂ D, dove D è un dominio semplicemente
connesso (privo di buchi),

9 Dalla conservatività alla potenzialità

Si vuole ora dimostrare l’implicazione (A)⇒(B), ossia che se un campo vettoriale v⃗(x⃗) è conser-
vativo, allora è anche potenziale: esiste cioè una funzione scalare φ(x⃗) tale che v⃗(x⃗) = ∇φ(x⃗).
Questo risultato è centrale perché consente di ricondurre lo studio di un campo vettoriale a
quello di una singola funzione scalare, con enormi vantaggi sia analitici sia computazionali.

9.1 Il teorema di Stokes e il contesto geometrico

Prima di procedere alla dimostrazione, è utile richiamare il teorema di Stokes, che collega l’inte-
grale di superficie del rotore di un campo vettoriale al circuito del campo stesso lungo la frontiera
della superficie. Data una superficie S con bordo ∂S = C, e indicato con n̂ il versore normale a
S, il teorema afferma: ∫

S
(∇× v⃗(x⃗)) · n̂ dS =

∮
∂S
v⃗(x⃗) · dx⃗. (78)

Figura 20: Superficie S con frontiera C = ∂S. Il versore n̂ è normale all’elemento di superficie
dS; il vettore dx⃗ è tangente alla curva di bordo C. Il teorema di Stokes lega l’integrale di
superficie del rotore all’integrale di linea lungo ∂S.

9.2 Funzione scalare di punto e indipendenza dal percorso

Si definisce la funzione

φ(x⃗) =

∫ x⃗

x⃗0

v⃗(x⃗ ′) · dx⃗ ′, (79)

dove x⃗0 è un punto di riferimento fissato. Per funzione scalare di punto si intende una funzio-
ne il cui valore dipende unicamente dai punti iniziale x⃗0 e finale x⃗, e non dal particolare percorso
seguito per collegare i due punti. Questa proprietà è garantita proprio dalla conservatività del
campo: poiché

∮
C v⃗ · dx⃗ = 0 per ogni curva chiusa C nel dominio, l’integrale di linea tra due

punti qualsiasi è indipendente dal cammino.

9.3 Dimostrazione: conservatività implica potenzialità

Si deve dimostrare che, se v⃗(x⃗) è conservativo, allora v⃗(x⃗) = ∇φ(x⃗), con φ definita dalla (79).

Si consideri uno spostamento ∆x⃗ nel dominio D della funzione φ. La variazione di φ è:

∆φ(x⃗) = φ(x⃗+∆x⃗)− φ(x⃗) =

∫ x⃗+∆x⃗

x⃗0

v⃗(x⃗ ′) · dx⃗ ′ −
∫ x⃗

x⃗0

v⃗(x⃗ ′) · dx⃗ ′ =

∫ x⃗+∆x⃗

x⃗
v⃗(x⃗ ′) · dx⃗ ′. (80)

Ad una variazione ∆x⃗ = (x⃗+∆x⃗)− x⃗ della posizione corrisponde dunque una variazione ∆φ(x⃗)
della funzione potenziale.
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Si effettua ora il passaggio al limite per ∆x⃗ → 0⃗. Per il teorema della media integrale15,
applicato all’integrale nella (80), si ottiene:

Figura 21: Illustrazione del teorema della media integrale: il rettangolo di base [a, b] e altezza
f(c) ha area uguale a quella sottesa dalla curva f(x) nell’intervallo [a, b].

lim
∆x⃗→0⃗

∆φ = dφ(x⃗) = v⃗(x⃗) · dx⃗. (81)

Il differenziale dφ(x⃗) quantifica la variazione infinitesima della funzione rispetto a ciascuna delle
variabili indipendenti che compongono x⃗: si tratta del differenziale totale. Se si considerasse
la variazione rispetto ad una sola variabile indipendente, si parlerebbe di differenziale parziale.

In componenti, il differenziale parziale rispetto alla i-esima variabile è
(

∂y
∂xi

)
dxi, mentre il

differenziale totale si scrive:

dy =
∂y

∂x1
dx1 +

∂y

∂x2
dx2 + · · ·+ ∂y

∂xn
dxn = ∇y · dx⃗. (82)

Applicando questa struttura alla funzione φ(x⃗):

dφ(x⃗) =
∂φ

∂x
dx+

∂φ

∂y
dy +

∂φ

∂z
dz = ∇φ(x⃗) · dx⃗. (83)

Confrontando la (81) con la (83) si conclude che

dφ(x⃗) = ∇φ(x⃗) · dx⃗ = v⃗(x⃗) · dx⃗, (84)

da cui v⃗(x⃗) = ∇φ(x⃗), se e solo se il dominio D è semplicemente connesso, ossia privo di “buchi”.16

Interpretazione fisica. Il risultato stabilisce che, in un dominio semplicemente connesso,
un campo vettoriale conservativo ammette sempre una funzione potenziale φ il cui gradiente
ricostruisce il campo stesso. Ciò significa che tutta l’informazione contenuta nel campo vetto-
riale (tre componenti) è codificata in una singola funzione scalare: una riduzione drastica della
complessità del problema.

10 Forze conservative, traiettorie e concetti di equilibrio

Un punto materiale soggetto a campi di forze conservativi può cambiare il proprio stato — la
propria posizione — in modo tale che le forze compiono un lavoro indipendente dal percorso

15Il teorema della media integrale afferma che, data una funzione continua f su [a, b], esiste un punto c ∈ [a, b]

tale che
∫ b

a
f(x) dx = f(c)(b− a).

16La semplice connessione del dominio è condizione necessaria affinché l’irrotazionalità implichi la conservatività.
In domini non semplicemente connessi un campo irrotazionale può non essere conservativo.
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seguito. Questa proprietà consente di descrivere la forza e le sue componenti in funzione di una
funzione scalare, il potenziale.

Se F⃗ (x⃗) è un campo di forza conservativo, allora esiste una funzione potenziale φ(x⃗) tale che:

F⃗ (x⃗) = ∇φ(x⃗). (85)

La forza è dunque associata ad un campo potenziale.

10.1 Proiezione della forza lungo una direzione

In generale si studia la componente di F⃗ lungo una direzione generica individuata dal versore
ŵ:

F⃗ · ŵ = Fw = ∇φ(x⃗) · ŵ, (86)

dove ŵ può coincidere con uno qualsiasi dei versori êk del sistema di riferimento cartesiano.

Proiettando lungo il k-esimo versore êk:

F⃗ · êk = (f1ê1 + f2ê2 + f3ê3) · êk = fk, (87)

e analogamente:

∇φ(x⃗) · êk =

(
∂φ

∂x
ê1 +

∂φ

∂y
ê2 +

∂φ

∂z
ê3

)
· êk =

∂φ(x⃗)

∂xk
, (88)

da cui si ottiene la relazione fondamentale tra la k-esima componente della forza e la derivata
parziale del potenziale:

fk =
∂φ(x⃗)

∂xk
. (89)

Figura 22: Sistema di riferimento con assi ê1, ê2, ê3. La curva rossa S rappresenta la traiettoria;
il vettore blu F⃗ = ∇φ(x⃗) origina dal punto x⃗ sulla curva, mentre il versore verde ê è tangente
alla traiettoria in x⃗. Il vettore r⃗ indica la posizione rispetto all’origine.

10.2 Derivata direzionale e proiezione lungo la traiettoria

Si consideri ora la proiezione della forza lungo un versore generico ê espresso in componenti
come ê = t1ê1 + t2ê2 + t3ê3, dove t1, t2, t3 sono i coseni direttori della direzione individuata da
ê. Si ha:

F⃗ · ê =
(
∂φ

∂x1
ê1 +

∂φ

∂x2
ê2 +

∂φ

∂x3
ê3

)
· (t1ê1 + t2ê2 + t3ê3), (90)
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che si riduce a:

F⃗ · ê =
3∑

k=1

∂φ(x⃗)

∂xk
tk =

∂φ(x⃗)

∂s

∣∣∣∣
x⃗

, (91)

dove il membro destro è la derivata direzionale di φ(x⃗) lungo la traiettoria S, ossia lungo
l’ascissa curvilinea s.

Per derivata direzionale di una funzione scalare φ(x⃗) lungo un vettore ê si intende il limite:

∂φ

∂s
= lim

h→0

φ(x⃗+ hê)− φ(x⃗)

h
. (92)

Essa rappresenta la variazione di φ nella direzione di ê. Equivalentemente, parametrizzando il
potenziale lungo l’ascissa curvilinea s:

lim
∆s→0

φ(s+∆s)− φ(s)

∆s
=
∂φ

∂s
= F⃗ · ê, (93)

relazione valida se e solo se F⃗ è conservativa, cosicché φ è la funzione potenziale di F⃗ .

Interpretazione fisica. La componente della forza conservativa lungo una qualsiasi direzione
è pari alla derivata del potenziale in quella direzione. Lungo la traiettoria, la forza “sente”
il gradiente del potenziale: dove il potenziale cresce rapidamente, la forza è intensa; dove il
potenziale è stazionario, la forza si annulla.

10.3 Relazioni tra conservatività, potenzialità e irrotazionalità

Dato un campo vettoriale F⃗ (x⃗) con x⃗ ∈ D ⊂ R3, si hanno le seguenti proprietà:

• Campo conservativo:
∮
C
F⃗ (x⃗) · dx⃗ = 0 per ogni curva chiusa C ⊂ D.

• Campo potenziale: F⃗ (x⃗) = ∇φ(x⃗) per una opportuna funzione scalare φ.

• Campo irrotazionale: ∇× F⃗ (x⃗) = 0⃗.

In meccanica, conservatività e potenzialità sono equivalenti (in domini semplicemente connessi).
In meccanica dei fluidi, l’equivalenza rilevante è tra potenzialità e irrotazionalità. È fondamentale
osservare che un campo irrotazionale non è necessariamente conservativo:

∇× F⃗ (x⃗) = 0⃗⇏ F⃗ (x⃗) = ∇φ(x⃗), (94)

mentre vale l’implicazione inversa:

F⃗ (x⃗) = ∇φ(x⃗) ⇒ ∇× F⃗ (x⃗) = 0⃗. (95)

Interpretazione fisica. La distinzione è sottile ma cruciale: l’irrotazionalità è una condizione
locale (il rotore si annulla punto per punto), mentre la conservatività è una proprietà globale
(l’integrale di linea si annulla su ogni curva chiusa). Le due proprietà coincidono solo se il
dominio è semplicemente connesso.
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10.4 Esempio: verifica di irrotazionalità

Si consideri il campo vettoriale:

F⃗ (x, y, z) =

(
x− 3y

2(x− y)3/2
,

3x− y

2(x− y)3/2
, 0

)
, F : R3 → R3. (96)

L’insieme di definizione è:
D = {(x, y, z) ∈ R3 : x > y}, (97)

poiché si richiede (x− y)3 > 0, ossia x > y. Il dominio D è semplicemente connesso.17

Si calcola il rotore di F⃗ :

∇× F⃗ =

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣∣∣∣∣∣ =
(
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

)
. (98)

Poiché F3 = 0 e F1, F2 non dipendono da z, le prime due componenti del rotore si annullano
immediatamente. Per la terza componente si calcola:

∂F2

∂x
=

∂

∂x

[
3x− y

2(x− y)3/2

]
. (99)

Svolgendo analogamente ∂F1
∂y , si verifica che le due derivate coincidono, cosicché la terza compo-

nente del rotore si annulla. In definitiva:

∇× F⃗ = 0⃗, (100)

e il campo è irrotazionale nel suo dominio di definizione. Essendo inoltre D semplicemente
connesso, il campo è anche conservativo e ammette funzione potenziale.

10.5 Ruolo della derivata del potenziale nell’equilibrio

Se un punto materiale è vincolato a muoversi lungo una traiettoria assegnata, esso possiede un
solo grado di libertà, descritto dall’ascissa curvilinea s. La risultante delle forze agenti, proiettata
lungo la tangente alla traiettoria, determina l’accelerazione del punto lungo il suo unico grado
di libertà.

L’intensità di tale risultante varia lungo la traiettoria: vi saranno massimi, minimi e punti in
cui essa si annulla. In un punto generico, se il punto materiale parte da quiete, esso assume
un’accelerazione proporzionale alla proiezione della risultante lungo il grado di libertà. Se tale
proiezione è nulla, il punto rimane in stato di quiete: questo è il concetto di equilibrio.

Si possono dunque sintetizzare due fatti fondamentali:

1. Le componenti di una forza conservativa sono legate alle derivate della funzione potenziale
associata, come espresso dalla (89).

2. Le componenti della forza lungo la tangente alla traiettoria, essendo legate all’accelerazione
del punto, possono dar luogo a posizioni particolari in cui il punto materiale è in equilibrio
indefinitamente se lasciato con velocità nulla.

Le derivate della funzione potenziale di un campo conservativo giocano pertanto un ruolo
fondamentale nella definizione e nella caratterizzazione dell’equilibrio.

17Il semipiano x > y in R3 è un aperto convesso, dunque semplicemente connesso.
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11 Bilancio energetico: lavoro ed energia

Il legame tra forze e movimento trova la sua formulazione più potente nel linguaggio energetico.
Si sviluppa qui il bilancio per un punto materiale, partendo dalla seconda legge di Newton.

11.1 Teorema dell’energia cinetica

Dalla seconda legge di Newton:

ma⃗ = F⃗ =⇒ m
dv⃗

dt
= F⃗ . (101)

Eseguendo il prodotto scalare di entrambi i membri per la velocità v⃗:

m
dv⃗

dt
· v⃗ = F⃗ · v⃗. (102)

Il membro sinistro si riscrive osservando che18:

m
dv⃗

dt
· v⃗ = m

d

dt

(
v2

2

)
=
dT

dt
, (103)

avendo definito l’energia cinetica:
T =

1

2
mv2. (104)

Il risultato fondamentale è il teorema dell’energia cinetica (o teorema delle forze vive):

dT

dt
= F⃗ · v⃗. (105)

Interpretazione fisica. Istante per istante, la derivata temporale dell’energia cinetica egua-
glia la potenza sviluppata dalla risultante di tutte le forze agenti sul punto materiale. Se la
potenza è positiva, l’energia cinetica cresce (il punto accelera); se è negativa, decresce (il punto
decelera).

11.2 Concetto di lavoro

Per introdurre il concetto di lavoro, si moltiplica l’equazione (105) per l’infinitesimo temporale
dt:

dT = (F⃗ · v⃗) dt = F⃗ · (v⃗ dt) = F⃗ · dx⃗ = dL, (106)

dove si è usato il fatto che v⃗ dt = dx⃗.19 La quantità dL = F⃗ · dx⃗ è il lavoro elementare, ossia
la quantità di lavoro compiuto dalla risultante delle forze nell’intervallo infinitesimo associato
allo spostamento dx⃗.

Per verificare esplicitamente l’identità (F⃗ · v⃗) dt = F⃗ · dx⃗, si sviluppa in componenti:

(F⃗ · v⃗) dt = (f1v1 + f2v2 + f3v3) dt

= f1 v1 dt+ f2 v2 dt+ f3 v3 dt

= f1 dx1 + f2 dx2 + f3 dx3 = F⃗ · dx⃗. (107)

18Si utilizza l’identità d
dt
(v⃗ · v⃗) = 2 v⃗ · dv⃗

dt
, da cui v⃗ · dv⃗

dt
= 1

2
d(v2)
dt

.
19La proprietà k(⃗a · b⃗) = (ka⃗) · b⃗ = a⃗ · (k⃗b) garantisce la legittimità del passaggio.
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Integrando tra due posizioni x⃗1 = x⃗(t1) e x⃗2 = x⃗(t2):

T2 − T1 =

∫ x⃗2

x⃗1

F⃗ · dx⃗ = LC1→2 . (108)

Il risultato è il teorema dell’energia cinetica in forma finita: la variazione di energia
cinetica tra due stati successivi è pari al lavoro compiuto da tutte le forze esterne — in generale
non conservative — per spostare il punto materiale da x⃗1 a x⃗2 lungo la traiettoria C. Si noti
che, in generale, il lavoro dipende dalla traiettoria seguita.

11.3 Lavoro di forze conservative e funzione potenziale

Se la forza F⃗C è conservativa, allora:∮
F⃗C · dx⃗ = 0 =⇒

∫ x⃗2

x⃗1

F⃗C · dx⃗ = L1→2, (109)

e il lavoro non dipende dal percorso. Condizione necessaria (ma non sufficiente) affinché una
forza sia conservativa è che sia posizionale, ossia che dipenda solo dalla posizione: F⃗ = F⃗ (x⃗).

Si associa a F⃗C il campo potenziale φC , cosicché F⃗C = ∇φC . Il lavoro si calcola come:

L1→2 =

∫ x⃗2

x⃗1

F⃗C · dx⃗ =

∫ x⃗2

x⃗1

∇φC · dx⃗ =

∫ x⃗2

x⃗1

dφC = φC2 − φC1 , (110)

dove si è sfruttato il fatto che ∇φC(x⃗) · dx⃗ = dφC(x⃗) è il differenziale totale di φC :

dφC(x⃗) =
∂φC

∂x1
dx1 +

∂φC

∂x2
dx2 +

∂φC

∂x3
dx3. (111)

11.4 Decomposizione della forza e bilancio energetico completo

In generale, la forza agente sul punto materiale si decompone in un contributo conservativo e
uno non conservativo:

F⃗ = F⃗C + F⃗NC . (112)

La variazione di energia cinetica diventa:

T2 − T1 =

∫ x⃗2

x⃗1

F⃗C · dx⃗+

∫ x⃗2

x⃗1

F⃗NC · dx⃗ = L1→2 + LNC, 1→2. (113)

11.5 Energia potenziale

Si definisce l’energia potenziale come:

U(x⃗) = −φ(x⃗), (114)

da cui dU(x⃗) = −dφ(x⃗). L’energia potenziale è una funzione scalare di punto associata ad un
campo di forze conservativo, pari alla funzione potenziale cambiata di segno.20

Poiché è possibile fissare in modo arbitrario il livello zero dell’energia potenziale, essa è definita
a meno di una costante additiva.

20Il segno meno è convenzionale: ad un lavoro positivo della forza conservativa corrisponde una riduzione
dell’energia potenziale. Il punto materiale “scende” nel paesaggio energetico quando la forza compie lavoro
positivo.
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11.6 Teorema di conservazione dell’energia meccanica

Sostituendo L1→2 = φC2 − φC1 = −(U2 − U1) nella (113):

T2 + U2 − T1 − U1 = LNC, 1→2. (115)

Definendo l’energia meccanica come:

EM = T + U, (116)

il bilancio si scrive nella forma compatta:

EM2 − EM1 = LNC, 1→2. (117)

Nel caso in cui le uniche forze agenti siano conservative, ossia LNC, 1→2 = 0:

EM2 − EM1 = 0 =⇒ EM = costante. (118)

Interpretazione fisica. L’energia meccanica si conserva quando le sole forze in gioco sono
conservative. In tal caso, energia cinetica e potenziale si scambiano continuamente, ma la loro
somma resta invariata: ciò che il punto “guadagna” in velocità lo “perde” in quota (o viceversa).
Le forze non conservative (attrito, resistenza dell’aria) rompono questa simmetria, producendo
una variazione netta dell’energia meccanica pari al lavoro da esse compiuto.

12 Equilibrio e stabilità

12.1 Condizione di equilibrio

La derivata della funzione potenziale è intimamente legata al concetto di equilibrio. Si definisce
posizione di equilibrio x⃗e una configurazione costante del punto materiale tale che:

dx⃗e
dt

= 0⃗ = v⃗, (119)

ossia il punto è fermo. Se x⃗e fosse variabile nel tempo, la velocità sarebbe non nulla.

In generale la forza dipende da posizione, velocità e tempo: F⃗ (x⃗, v⃗, t). Nella posizione di
equilibrio, con x⃗ = x⃗e e v⃗ = 0⃗, la condizione di equilibrio richiede:

F⃗ (x⃗e, 0⃗, t) = 0⃗. (120)

Se il punto materiale ha velocità nulla in x⃗e e la risultante delle forze è nulla, il punto rimane in
quella posizione indefinitamente.

12.2 Classificazione della stabilità

Se si perturba il punto materiale dalla posizione di equilibrio x⃗e, il comportamento successivo
definisce il tipo di stabilità:

• Equilibrio instabile: il punto assume un moto che lo allontana indefinitamente da x⃗e.

• Equilibrio stabile: il punto assume un moto confinato in un intorno di x⃗e.

• Equilibrio asintoticamente stabile: il punto assume un moto tale che x⃗ → x⃗e per
t→ ∞.
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Interpretazione fisica. La stabilità è una proprietà qualitativa dell’equilibrio che risponde
alla domanda: “cosa succede se il sistema viene leggermente disturbato?”. Un equilibrio stabile
corrisponde a un minimo dell’energia potenziale (il punto “tende a tornare”), uno instabile a un
massimo (il punto “tende ad allontanarsi”), e uno asintoticamente stabile richiede la presenza
di meccanismi dissipativi che smorzano le oscillazioni.

12.3 Applicazione: il loop

Si consideri un punto materiale di massa m che si muove lungo una guida liscia comprendente
un tratto circolare (loop) di raggio R. La traiettoria è assegnata e il vincolo è liscio: il punto
ha un solo grado di libertà. Le forze in gioco sono conservative, dunque l’energia meccanica si
conserva: EM = T + U = costante.

Figura 23: Punto materiale di massa m su una guida con loop circolare di raggio R. Il punto
parte da un’altezza hA con velocità nulla. Lo zero dell’energia potenziale è fissato alla base del
loop.

Problema. Determinare l’altezza hA tale che non si verifichi distacco nel loop.

12.3.1 Bilancio energetico

Nel punto A (altezza hA, velocità nulla) l’energia meccanica è:

EMA
= mghA. (121)

Nel punto B (alla base del loop, quota zero) l’energia meccanica è:

EMB
=

1

2
mv2B. (122)

Per la conservazione dell’energia meccanica:

mghA =
1

2
mv2B. (123)

12.3.2 Condizione di distacco

La condizione di distacco si verifica quando la reazione vincolare normale RN si annulla. L’e-
quazione del moto nel loop è:

mg⃗ + R⃗N = ma⃗. (124)

Poiché il loop è una traiettoria circolare di raggio R costante, la forza vincolare non compie
lavoro, essendo ortogonale allo spostamento tangente alla traiettoria.

Proiettando l’equazione (124) sulla terna intrinseca (ê, n̂) nel caso bidimensionale, e ricordando
che a⃗ = s̈ ê+ ṡ2

R n̂ con s = Rθ:
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Figura 24: Punto materiale nel loop circolare di raggio R. L’angolo θ è misurato dalla verticale
discendente passante per il centro C. I versori ê (tangente) e n̂ (normale centripeto) definiscono
la terna intrinseca. La quota nel loop è h = R−R cos θ.

ê) mRθ̈ = −mg sin θ, (125)

n̂) mRθ̇2 = −mg cos θ +RN . (126)

Imponendo la condizione di distacco RN = 0 nella (126):

mRθ̇2 = −mg cos θ. (127)

Poiché m,R > 0 e θ̇2 ≥ 0, il membro sinistro è non negativo. Affinché l’uguaglianza sia
soddisfatta con RN = 0, è necessario che −mg cos θ ≥ 0, ossia:

cos θ < 0, (128)

il che significa che il distacco può avvenire solo nella metà superiore del loop (θ > π/2).21

Si osservi che l’equazione (125) è un’equazione differenziale non lineare (analoga a quella del
pendolo, dove compariva il seno). A differenza del caso del pendolo, qui non è possibile lineariz-
zare attorno a un punto di equilibrio, poiché il problema è intrinsecamente dinamico e coinvolge
ampie escursioni angolari.

12.3.3 Legame tra altezza di partenza e velocità nel loop

Si vogliono determinare:

1. il legame tra hA e la velocità di ingresso nel loop vC ;

2. il legame tra vC e l’altezza h raggiunta nel loop.

Applicando la conservazione dell’energia meccanica all’interno del loop, con h = R − R cos θ e
ṡ = Rθ̇ = v:

EM = T + U =
1

2
mR2θ̇2 +mgR(1− cos θ) = costante, (129)

e il valore della costante è fissato dalle condizioni iniziali, ad esempio dall’altezza hA o dalla
velocità vC all’ingresso del loop.

21Per cos θ = 0 (ossia θ = π/2) si avrebbe θ̇ = 0, cioè il punto è fermo in quella posizione: caso limite.
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13 Equilibrio e studio della stabilità per un punto materiale con
un grado di libertà

In generale, la sollecitazione agente su un punto materiale dipende dalla posizione, dalla velocità e
dal tempo. Si consideri un punto materiale vincolato a muoversi lungo una traiettoria assegnata,
descritto dall’ascissa curvilinea s: il sistema possiede un solo grado di libertà.

Figura 25: Traiettoria assegnata S con un punto materiale nella posizione di equilibrio se. Il
sistema possiede un solo grado di libertà, parametrizzato dall’ascissa curvilinea s.

14 Stabilità dell’equilibrio di un punto materiale su traiettoria
assegnata

Lo studio della stabilità dell’equilibrio rappresenta uno dei problemi centrali della meccanica
razionale: dato un punto materiale in equilibrio, ci si chiede se, a seguito di una piccola per-
turbazione, il sistema tenda a ritornare alla configurazione di equilibrio oppure se ne allontani
indefinitamente. La risposta a questa domanda dipende in modo cruciale dalle proprietà della
sollecitazione agente sul sistema, e la sua analisi richiede la linearizzazione dell’equazione del
moto nell’intorno della posizione di equilibrio.

14.1 Condizioni di equilibrio e sollecitazione

Si consideri un punto materiale soggetto ad una sollecitazione f⃗ che dipende, in generale, dalla
posizione x⃗, dalla velocità ˙⃗x e dal tempo t. La condizione di equilibrio statico richiede che, in
corrispondenza di una posizione x⃗e = cost. e di velocità nulla v⃗ = 0⃗, la sollecitazione si annulli
identicamente:

f⃗(x⃗e, 0⃗, t) = 0⃗ ∀ t. (130)

In altre parole, la sollecitazione complessiva che agisce sul punto materiale quando questo si
trova fermo nella posizione di equilibrio è identicamente nulla per ogni istante di tempo.

Qualora il punto materiale sia vincolato a muoversi lungo una traiettoria assegnata, il sistema
possiede un solo grado di libertà e lo stato del moto è completamente descritto dall’ascissa
curvilinea s e dalla sua derivata temporale ṡ. La sollecitazione può dunque essere riscritta in
funzione del solo parametro s:

f⃗(s, ṡ, t) −→ f(se, 0, t) = 0 ∀ t, (131)
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dove se = cost. è l’ascissa curvilinea corrispondente alla posizione di equilibrio e la condizione
ṡ = 0 esprime la quiete del punto.

14.2 Equazione del moto linearizzata

Per studiare la stabilità dell’equilibrio si perturba il sistema con una piccola sollecitazione e si
analizza l’evoluzione della perturbazione nel tempo. Si assume che il raggio di curvatura della
traiettoria nell’intorno del punto di equilibrio sia sufficientemente grande (R → ∞), cosicché
la componente normale della sollecitazione risulti trascurabile22. L’equazione oraria, proiettata
lungo la direzione tangente u⃗t, assume la forma:

ms̈ = f(s, ṡ, t), (132)

dove f indica la componente tangenziale della sollecitazione. All’equilibrio, tale equazione si
riduce a ms̈ = f(se, 0, t) = 0.

Si introduca ora una piccola perturbazione s′(t) rispetto alla posizione di equilibrio, ponendo:

s(t) = se + s′(t). (133)

L’obiettivo è determinare come varia lo stato dinamico del sistema nell’intorno dello stato
meccanico di equilibrio (se, 0).

Espansione in serie di Taylor. Si espande la funzione sollecitazione f(s, ṡ, t) in serie di
Taylor attorno al punto di equilibrio (se, 0), arrestando lo sviluppo al primo ordine:

f(s, ṡ, t) ≈ f(se, 0, t) +
∂f

∂s

∣∣∣∣
eq
(s− se) +

∂f

∂ṡ

∣∣∣∣
eq
(ṡ− 0) + o(s′2, ṡ′2). (134)

Poiché s− se = s′ e ṡ = ṡ′, si ottiene:

f(s, ṡ, t) ≈ f(se, 0, t) +
∂f

∂s

∣∣∣∣
eq
s′ +

∂f

∂ṡ

∣∣∣∣
eq
ṡ′ + o(s′2, ṡ′2). (135)

Sostituendo nell’equazione oraria (132) e osservando che f(se, 0, t) = 0 per la condizione di
equilibrio, e che s̈(t) = s̈′(t) essendo se costante, si perviene all’equazione linearizzata:

ms̈′ =
∂f

∂s

∣∣∣∣
eq
s′ +

∂f

∂ṡ

∣∣∣∣
eq
ṡ′, (136)

in cui i termini di ordine superiore al primo sono stati trascurati.

14.3 Equazione caratteristica e parametri G e K

Per rendere più compatta la trattazione, si introducono i parametri:

G = − ∂f

∂ṡ

∣∣∣∣
eq
, K = − ∂f

∂s

∣∣∣∣
eq
, (137)

cosicché l’equazione (136) si riscrive nella forma canonica:

ms̈′ +G ṡ′ +K s′ = 0. (138)

Si tratta di un’equazione differenziale ordinaria lineare omogenea del secondo ordine a coefficienti
costanti, la cui incognita è l’evoluzione temporale della perturbazione s′(t). Essa governa la
dinamica delle piccole perturbazioni nell’intorno del punto di equilibrio (se, 0).

22Questa ipotesi equivale a considerare la traiettoria localmente rettilinea nell’intorno di se, il che consente di
proiettare l’equazione del moto esclusivamente lungo la direzione tangente u⃗t.
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Interpretazione fisica. Il parametroK ha il ruolo di una rigidezza: seK > 0, la sollecitazione
nell’intorno dell’equilibrio è di tipo richiamante (tende a riportare il punto verso se); se K < 0,
è di tipo repulsivo. Il parametro G ha il ruolo di uno smorzamento: se G > 0, la sollecitazione
dissipa energia cinetica della perturbazione; se G < 0, la amplifica. La massa m è sempre
positiva.

Si cerca una soluzione del tipo s′(t) = C eγt; sostituendo nell’equazione (138) si ottiene l’equa-
zione caratteristica:

mγ2 +Gγ +K = 0, (139)

le cui radici sono:
γ1,2 =

−G±
√
G2 − 4mK

2m
. (140)

La soluzione generale è pertanto:

s′(t) = C1 e
γ1t + C2 e

γ2t, (141)

e il comportamento asintotico per t → ∞ dipende dal segno della parte reale delle radici γ1,2,
dunque dai valori di G e K.

14.4 Classificazione dei casi

Si analizzano sistematicamente tutti i casi possibili, organizzati in base ai segni dei parametri
G e K.

Figura 26: Diagramma riassuntivo dei casi per la classificazione della stabilità dell’equilibrio in
funzione dei parametri G e K.

14.4.1 Caso 1: G > 0, K > 0 — Equilibrio asintoticamente stabile

Quando sia G > 0 che K > 0, il calcolo delle radici γ1,2 conduce a due sottocasi.

Radici reali negative (G2− 4mK > 0). Il discriminante è positivo e si ottengono due radici
reali distinte, entrambe negative. La soluzione generale è:

s′(t) = C1 e
γ1t + C2 e

γ2t → 0 per t→ ∞, (142)

poiché γ1 < 0 e γ2 < 0. Il punto materiale ritorna alla posizione di equilibrio senza oscillare,
con un decadimento esponenziale monotono.

Radici complesse coniugate con parte reale negativa (G2−4mK < 0). Il discriminante
è negativo e le radici assumono la forma γ1,2 = β ± jω, dove:

β = − G

2m
< 0 (poiché G > 0). (143)
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Figura 27: Andamento della perturbazione s′(t) nel caso di equilibrio asintoticamente stabile
con radici reali negative: il punto materiale non oscilla e ritorna asintoticamente all’equilibrio.

La soluzione si scrive:

s′(t) = eβt
[
A cos(ωt) +B sin(ωt)

]
→ 0 per t→ ∞, (144)

poiché β < 0. Il punto materiale oscilla attorno alla posizione di equilibrio con ampiezza
esponenzialmente decrescente.

Figura 28: Andamento della perturbazione s′(t) nel caso di equilibrio asintoticamente stabile
con radici complesse coniugate: il punto materiale oscilla con ampiezza decrescente, tendendo
asintoticamente all’equilibrio.

14.4.2 Caso 2: G > 0, K < 0 — Equilibrio instabile

Quando G > 0 e K < 0, il discriminante G2 − 4mK è sempre positivo (poiché −4mK > 0), e si
ottengono due radici reali distinte, una positiva e una negativa: γ1 > 0 e γ2 < 0. La soluzione
generale è:

s′(t) = C1 e
γ1t + C2 e

γ2t → ∞ per t→ ∞, (145)
poiché il termine con γ1 > 0 prevale asintoticamente. Il punto materiale si allontana dalla
posizione di equilibrio senza oscillare: l’equilibrio è instabile.

Figura 29: Andamento della perturbazione s′(t) nel caso G > 0, K < 0: equilibrio instabile con
divergenza esponenziale monotona.

14.4.3 Caso 3: G = 0, K > 0 — Equilibrio stabile (moto oscillatorio)

In assenza di smorzamento (G = 0) e con rigidezza positiva (K > 0), l’equazione del moto si
riduce a:

ms̈′ +K s′ = 0. (146)

39



NOTESTOBOOK

Le radici dell’equazione caratteristica sono puramente immaginarie:

γ1,2 = ±jω, ω =

√
K

m
, (147)

e la soluzione è:
s′(t) = A cos(ωt) +B sin(ωt). (148)

Il punto materiale assume un moto oscillatorio confinato attorno alla posizione di equilibrio se,
con ampiezza costante nel tempo. L’equilibrio è stabile ma non asintoticamente stabile, poiché
la perturbazione non si smorza.

Figura 30: Andamento della perturbazione s′(t) nel caso G = 0, K > 0: moto oscillatorio
armonico confinato attorno all’equilibrio.

Interpretazione fisica. La condizione G = 0 implica che la sollecitazione proiettata f non
dipende dalla velocità ṡ, ovvero ∂f/∂ṡ|eq = 0. La forza è dunque puramente posizionale e non
vi è alcun meccanismo dissipativo: l’energia meccanica si conserva e il moto è periodico.

14.4.4 Caso 4: G = 0, K < 0 — Equilibrio instabile

Con G = 0 e K < 0, l’equazione del moto è ancora ms̈′ +K s′ = 0, ma ora le radici sono reali e
distinte:

γ1,2 = ±
√

−K
m
, con − K

m
> 0 poiché K < 0, (149)

di cui una positiva (γ1 > 0) e una negativa (γ2 < 0). La soluzione è:

s′(t) = C1 e
γ1t + C2 e

γ2t → ∞ per t→ ∞, (150)

poiché il termine esponenziale crescente prevale. L’equilibrio è instabile.

Figura 31: Andamento della perturbazione s′(t) nel caso G = 0, K < 0: equilibrio instabile con
divergenza esponenziale.

14.4.5 Caso 5: G < 0 — Equilibrio instabile (per qualsiasi K)

Quando G < 0, indipendentemente dal valore di K, l’equilibrio è sempre instabile. Riprendendo
l’espressione generale delle radici (140), si osserva che il termine −G/(2m) è positivo (poiché
G < 0), e pertanto la parte reale di almeno una delle due radici è positiva, qualunque sia il segno
del discriminante G2 − 4mK:
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• se G2 − 4mK > 0, si hanno due radici reali di cui almeno una positiva;

• se G2 − 4mK = 0, si ha una radice reale doppia positiva;

• se G2 − 4mK < 0, si hanno due radici complesse coniugate con parte reale positiva β =
−G/(2m) > 0.

In tutti i casi la soluzione contiene un termine del tipo eβt con β > 0, cosicché s′(t) → ∞
per t → ∞, sia che il moto sia oscillante sia che non lo sia. Il punto materiale si allontana
indefinitamente dalla posizione di equilibrio.

Figura 32: Andamento qualitativo della perturbazione nel caso G < 0: crescita esponenziale eβt
con β > 0, indipendentemente dal valore di K.

Interpretazione fisica. La condizione G < 0 corrisponde ad una sollecitazione che amplifica
la velocità della perturbazione anziché smorzarla: il sistema riceve energia dall’esterno in modo
proporzionale alla velocità, rendendo impossibile la stabilità.

14.4.6 Caso 6: K = 0 — Equilibrio indifferente (con distinzione dei sottocasi)

QuandoK = 0, la sollecitazione nell’intorno dell’equilibrio non dipende dalla posizione (∂f/∂s|eq =
0) e la natura dell’equilibrio dipende dal valore di G. Si distinguono tre sottocasi.

Sottocaso K = 0, G = 0. L’equazione del moto si riduce a ms̈′ = 0, ovvero la sollecitazione
non dipende né dalla posizione né dalla velocità. L’equazione caratteristica mγ2 = 0 fornisce
una radice doppia γ1,2 = 0, e la soluzione generale è23:

s′(t) = C1 + C2 t. (151)

Imponendo le condizioni iniziali generiche s′(0) = s′0 e ṡ′(0) = ṡ′0, si ottiene C1 = s′0 e C2 = ṡ′0,
da cui:

s′(t) = s′0 + ṡ′0 t. (152)

Il comportamento per t→ ∞ dipende dalla natura della perturbazione iniziale:

A) Perturbazione in posizione (s′0 ̸= 0, ṡ′0 = 0). Si ha s′(t) = s′0 per ogni t, ovvero:

s(t) = se + s′0. (153)

Il punto materiale rimane indefinitamente in quiete nella nuova posizione: l’equilibrio è
indifferente.

23Nel caso di radici coincidenti γ1 = γ2 = 0, la soluzione generale dell’equazione differenziale lineare del secondo
ordine include il termine secolare C2 t oltre alla costante C1.
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B) Perturbazione in velocità (s′0 = 0, ṡ′0 ̸= 0). Si ha s′(t) = ṡ′0 t, ovvero:

s(t) = se + ṡ′0 t→ ∞ per t→ ∞. (154)

Il punto materiale si allontana indefinitamente dall’equilibrio con moto uniforme: l’equili-
brio è instabile rispetto a perturbazioni in velocità.

Sottocaso K = 0, G > 0. L’equazione del moto diventa ms̈′ + G ṡ′ = 0, la cui equazione
caratteristica mγ2 +Gγ = 0 fornisce due radici reali distinte:

γ1 = 0, γ2 = −G
m

= −α (α > 0 poiché G > 0). (155)

La soluzione generale è:
s′(t) = C1 + C2 e

−αt. (156)

Imponendo le condizioni iniziali s′(0) = s′0 e ṡ′(0) = ṡ′0, si ricava:

C1 =
α s′0 + ṡ′0

α
= s′0 +

ṡ′0
α
, C2 = − ṡ

′
0

α
, (157)

e la soluzione diventa:
s′(t) =

α s′0 + ṡ′0
α

− ṡ′0
α
e−αt. (158)

Anche in questo caso si distinguono due situazioni:

A) Perturbazione in posizione (s′0 ̸= 0, ṡ′0 = 0). Per t→ ∞ si ha s′(t) → s′0, ovvero:

s(t) = se + s′0. (159)

Il punto materiale rimane indefinitamente in quiete nella posizione perturbata.

B) Perturbazione in velocità (s′0 = 0, ṡ′0 ̸= 0). Per t → ∞ il termine esponenziale si
estingue e si ha:

s′(t) → ṡ′0
α
, ovvero s∞ = se +

ṡ′0
α
. (160)

Il punto materiale, perturbato in velocità, subisce un moto esponenzialmente decelerato
(grazie allo smorzamento G > 0) e raggiunge asintoticamente una nuova posizione di quiete
s∞, distante dall’equilibrio originario di una quantità ṡ′0/α. L’equilibrio è dunque stabile
in senso lato24.

Sottocaso K = 0, G < 0. L’equazione del moto è ancora ms̈′ + G ṡ′ = 0, ma ora G < 0.
L’equazione caratteristica fornisce:

γ1 = 0, γ2 = −G
m

= α (α > 0 poiché G < 0), (161)

e la soluzione generale è:
s′(t) = C1 + C2 e

αt. (162)

Poiché α > 0, il termine esponenziale cresce indefinitamente e s′(t) → ∞ per t → ∞, qua-
lunque siano le condizioni iniziali (purché C2 ̸= 0). L’equilibrio è instabile: il meccanismo di
amplificazione (G < 0) impedisce al sistema di rimanere nell’intorno dell’equilibrio.

24Si noti che, pur non ritornando alla posizione originaria se, il punto materiale non diverge: la perturbazione
rimane limitata per t → ∞. Tuttavia non si tratta di stabilità asintotica, poiché s′(t) ̸→ 0.
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14.5 Metodi energetici per lo studio della stabilità: forze conservative

Quando la sollecitazione dipende esclusivamente dalla posizione, ovvero F⃗ = F⃗ (s), si è in pre-
senza di una forza conservativa25. In tal caso esiste una funzione potenziale φ (o, equivalen-
temente, un’energia potenziale U) tale che:

F⃗ = ∇φ = −∇U, con F⃗ = F⃗ (s). (163)

Proiettando l’equazione del moto lungo l’unico grado di libertà — nell’ipotesi, già adottata,
di punto materiale vincolato ad una traiettoria assegnata con raggio di curvatura R → ∞
nell’intorno dell’equilibrio, cosicché la proiezione lungo la normale sia nulla —

15 Metodo energetico per la stabilità dell’equilibrio

Quando un punto materiale è vincolato a muoversi lungo una traiettoria e le forze agenti sono
conservative, lo studio della stabilità dell’equilibrio può essere ricondotto interamente all’analisi
dell’energia potenziale. Questo approccio, noto come metodo energetico, consente di classifica-
re le posizioni di equilibrio senza risolvere esplicitamente l’equazione del moto, sfruttando la
relazione tra la forza e il gradiente del potenziale.

15.1 Forza e derivata dell’energia potenziale lungo la traiettoria

Sia U(x⃗) = U(x, y, z) l’energia potenziale associata a una forza conservativa F⃗ = −∇U . La
componente della forza lungo la direzione tangente ê alla traiettoria, parametrizzata dall’ascissa
curvilinea s, è data da

F⃗ · ê = (−∇U) · ê = −∂U
∂s

= f(s). (164)

Per dimostrare la (164), si esprime il gradiente di U nella terna intrinseca (ê, n̂, b̂):

−∇U(x⃗) = −
(
∂U

∂s
ê+

∂U

∂n
n̂+

∂U

∂b
b̂

)
. (165)

Proiettando sulla direzione tangente e sfruttando l’ortonormalità della terna (ê · ê = 1, n̂ · ê = 0,
b̂ · ê = 0), si ottiene immediatamente

−∇U(x⃗) · ê = −∂U
∂s

, (166)

il che completa la dimostrazione.

15.2 Condizioni di equilibrio

Se l’energia potenziale U dipende dalla posizione esclusivamente attraverso l’ascissa curvilinea
s, la forza generalizzata f si riduce a una funzione della sola s: f = f(s). Le condizioni di
equilibrio statico richiedono che la forza si annulli nella posizione di equilibrio se, ossia

f(se) = 0 ⇐⇒ −∂U
∂s

∣∣∣∣
se

= 0. (167)

Le posizioni di equilibrio corrispondono dunque ai punti stazionari dell’energia potenziale.
25Una forza si dice conservativa quando il lavoro da essa compiuto lungo un qualsiasi percorso chiuso è nullo,

condizione equivalente all’esistenza di una funzione potenziale.
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15.3 Studio della stabilità: linearizzazione

L’equazione del moto scalare lungo la traiettoria è

ms̈ = f(s). (168)

Per studiare il comportamento del sistema in prossimità dell’equilibrio se, si introduce una
piccola perturbazione s′(t) tale che s(t) = se + s′(t), da cui s̈(t) = s̈′(t). Linearizzando f(s)
attorno a se mediante sviluppo di Taylor al primo ordine,

f(s) ≈ f(se) +
df

ds

∣∣∣∣
se

s′ +O(s′2), (169)

e trascurando i termini di ordine superiore al primo, tenendo conto che f(se) = 0, l’equazione
del moto linearizzata diviene

ms̈′ =
df

ds

∣∣∣∣
se

s′. (170)

Poiché f(s) = −∂U/∂s, si ha
df

ds
= −∂

2U

∂s2
, (171)

e definendo la rigidezza effettiva

K =
∂2U

∂s2

∣∣∣∣
se

, (172)

l’equazione linearizzata assume la forma canonica

ms̈′ +K s′ = 0. (173)

Interpretazione fisica. La costante K rappresenta la curvatura del profilo di energia poten-
ziale nel punto di equilibrio. Se K > 0 il potenziale presenta un minimo locale e la “forza di
richiamo” −Ks′ tende a riportare il sistema verso se; se K < 0 il potenziale ha un massimo e
la forza allontana il sistema dall’equilibrio; se K = 0 il potenziale è localmente piatto e occorre
un’analisi più fine.

15.4 Classificazione dell’equilibrio

La natura delle soluzioni dell’equazione (173) dipende dal segno di K. Si distinguono tre casi
fondamentali.

15.4.1 Caso I: K = 0 Equilibrio indifferente

Quando ∂2U/∂s2
∣∣
se

= 0, l’equazione (173) si riduce a ms̈′ = 0. L’equazione caratteristica
mγ2 = 0 ammette la radice γ1,2 = 0 con molteplicità ν = 2, e la soluzione generale è

s′(t) = C1 + C2 t. (174)

Imponendo le condizioni iniziali s′(0) = s′0 e ṡ′(0) = ṡ′0, si ottiene C1 = s′0 e C2 = ṡ′0, dunque

s(t) = se + s′0 + ṡ′0 t. (175)

Si distinguono due sottocasi:
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Perturbazione in sola posizione (s′0 ̸= 0, ṡ′0 = 0). La soluzione diviene s(t) = se + s′0:
il punto materiale rimane in quiete nella posizione perturbata, senza tendenza a tornare né ad
allontanarsi.

Perturbazione in sola velocità (s′0 = 0, ṡ′0 ̸= 0). La soluzione diviene s(t) = se + ṡ′0 t: il
punto si allontana indefinitamente dalla posizione di equilibrio con moto uniforme. L’equilibrio
è dunque instabile rispetto a perturbazioni in velocità26.

15.4.2 Caso II: K > 0 Equilibrio stabile

Quando ∂2U/∂s2
∣∣
se
> 0, l’equazione caratteristica associata alla (173) è

γ2 +
K

m
= 0 =⇒ γ1,2 = ± iω, ω =

√
K

m
. (176)

Le radici sono puramente immaginarie coniugate e la soluzione generale è

s(t) = se +A cos(ωt) +B sin(ωt), (177)

dove le costanti A e B sono determinate dalle condizioni iniziali. A meno che queste non siano
identicamente nulle, il punto materiale oscilla attorno alla posizione di equilibrio se con moto
armonico di pulsazione ω.

Interpretazione fisica. Il punto di equilibrio stabile corrisponde a un minimo dell’ener-
gia potenziale. La forza agisce sempre come forza di richiamo, e l’energia cinetica si con-
verte periodicamente in energia potenziale e viceversa, senza che il sistema possa allontanarsi
indefinitamente.

15.4.3 Caso III: K < 0 Equilibrio instabile

Quando ∂2U/∂s2
∣∣
se
< 0, l’equazione caratteristica fornisce radici reali e distinte:

γ2 = −K
m
> 0 =⇒ γ1,2 = ±ω, ω =

√
−K
m
. (178)

Si noti che qui ω è una quantità reale positiva, poiché K < 0 rende −K/m > 0. La soluzione
generale è

s(t) = se + C1 e
ωt + C2 e

−ωt. (179)
La presenza del termine eωt implica che, per qualsiasi perturbazione non nulla, il punto si allon-
tana esponenzialmente dalla posizione di equilibrio. Il punto di equilibrio instabile corrisponde
a un massimo dell’energia potenziale.

15.5 Sintesi del criterio energetico

In conclusione, per un punto materiale soggetto a sole forze conservative e vincolato a una
traiettoria parametrizzata dall’ascissa curvilinea s, le posizioni di equilibrio stabile coincidono
con i punti di minimo dell’energia potenziale U , le posizioni di equilibrio instabile con i punti di
massimo, e le posizioni di equilibrio indifferente con le zone in cui U è costante27.

26Per K = 0 la classificazione dell’equilibrio come stabile o instabile richiede in generale l’analisi dei termini di
ordine superiore nello sviluppo di Taylor dell’energia potenziale.

27Questo risultato è una conseguenza del teorema di Lagrange–Dirichlet, che garantisce la stabilità dell’equilibrio
nei minimi stretti dell’energia potenziale.
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15.6 Estensione a più gradi di libertà

Il risultato precedente può essere esteso a sistemi con più gradi di libertà. Nel caso di due
gradi di libertà, ad esempio, l’energia potenziale è una funzione U(x1, x2) e la classificazione
dell’equilibrio richiede lo studio della matrice hessiana di U valutata nel punto di equilibrio.

16 Approssimazione lineare di funzioni scalari e vettoriali

La linearizzazione delle equazioni del moto attorno a una posizione di equilibrio si fonda sul-
la teoria dell’approssimazione lineare di funzioni a più variabili. Si richiamano qui i risultati
essenziali.

16.1 Funzione reale a n variabili reali

Sia f : Ω ⊆ Rn → R differenziabile nell’aperto Ω, con x⃗ = (x1, x2, . . . , xn). Lo sviluppo al primo
ordine di f attorno al punto α⃗ ∈ Ω è

f(x⃗) ≈ f(α⃗) +∇f(α⃗) · (x⃗− α⃗), (180)

dove il gradiente è il vettore

∇f(α⃗) =
(
∂f

∂x1
(α⃗), . . . ,

∂f

∂xn
(α⃗)

)
, (181)

e il prodotto scalare si espande come

∇f(α⃗) · (x⃗− α⃗) =

n∑
i=1

∂f

∂xi
(α⃗) (xi − αi). (182)

Dal punto di vista geometrico, l’espressione (180) definisce l’iperpiano n-dimensionale tangente
al grafico di f nel punto α⃗.

16.2 Funzione vettoriale a n variabili

Sia f⃗ : Ω ⊆ Rn → Rm, con componenti f1(x⃗), . . . , fm(x⃗), ciascuna differenziabile in Ω aperto.
L’approssimazione lineare componente per componente nel punto α⃗ ∈ Ω è

fi(x⃗) ≈ fi(α⃗) +∇fi(α⃗) · (x⃗− α⃗), i = 1, . . . ,m. (183)

Raccogliendo tutte le componenti in forma compatta si ottiene

f⃗(x⃗) ≈ f⃗(α⃗) + Jf (α⃗) (x⃗− α⃗), (184)

dove Jf (α⃗) è la matrice jacobiana di f⃗ valutata in α⃗, le cui righe sono i gradienti delle m
componenti:

Jf (α⃗) =


∂f1
∂x1

(α⃗) · · · ∂f1
∂xn

(α⃗)

... . . . ...
∂fm
∂x1

(α⃗) · · · ∂fm
∂xn

(α⃗)

 . (185)
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16.3 Linearizzazione dell’equazione del moto vettoriale

Data l’equazione del moto di un punto materiale in forma generale,

m ¨⃗x = F⃗ (x⃗, ˙⃗x, t), (186)

si perturba il sistema attorno alla posizione di equilibrio statico x⃗e ponendo x⃗(t) = x⃗e + x⃗′(t).
Espandendo F⃗ in serie di Taylor al primo ordine e ricordando che F⃗ (x⃗e, 0⃗, t) = 0⃗ per definizione
di equilibrio, si ottiene, trascurando i termini di ordine superiore al primo,

m ¨⃗x′(t) =

3∑
k=1

∂F⃗

∂xk

∣∣∣∣∣
x⃗e

x′k +

3∑
k=1

∂F⃗

∂ẋk

∣∣∣∣∣
x⃗e

ẋ′k, (187)

dove x⃗ = x1 ı̂+x2 ȷ̂+x3 k̂. L’equazione (187) rappresenta un sistema di tre equazioni differenziali
scalari, lineari, omogenee e a coefficienti costanti, che governano le piccole perturbazioni attorno
alla posizione di equilibrio stazionario. L’analisi delle soluzioni di tale sistema — in particolare
il segno della parte reale degli autovalori della matrice dei coefficienti — determina la stabilità
o l’instabilità dell’equilibrio28.

17 Moti particolari

Si esaminano ora alcune classi di moti che ricorrono frequentemente nello studio della dinamica
del punto materiale, ciascuna caratterizzata da specifiche proprietà geometriche o cinematiche.

17.1 Moto rettilineo

Un moto si dice rettilineo quando, in ogni istante, il vettore accelerazione è parallelo al vettore
velocità:

a⃗× v⃗ = 0⃗ in ogni istante. (188)

Ricordando le espressioni intrinseche v⃗ = ṡ ê e a⃗ = s̈ ê+(ṡ2/R) n̂, il prodotto vettoriale si riduce
a

a⃗× v⃗ =
ṡ3

R
(n̂× ê).

Poiché n̂× ê ̸= 0⃗ in generale, la condizione (188) è soddisfatta se e solo se il raggio di curvatura
R→ ∞, ossia la traiettoria è una retta.

Figura 33: Punto materiale in moto lungo una traiettoria curva, con i vettori velocità v⃗ e
accelerazione a⃗.

28In presenza del termine in ẋ′
k, il sistema include effetti dissipativi o giroscopici, e la classificazione della

stabilità richiede lo studio completo dello spettro della matrice associata al sistema linearizzato.
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17.2 Moto piano

Un moto si dice piano quando il prodotto vettoriale a⃗ × v⃗ ha direzione costante nel tempo.
L’intensità di tale vettore può variare, ma la sua direzione rimane fissa: ciò garantisce che la
traiettoria giace interamente in un piano. Se la direzione variasse, la traiettoria si svilupperebbe
nello spazio tridimensionale.

Figura 34: Moto piano: i vettori v⃗ e a⃗ giacciono in un piano fisso, e il loro prodotto vettoriale
mantiene direzione costante.

17.3 Moto centrale

Dato un punto fisso C, si definisce moto centrale rispetto a C il moto per il quale, in ogni
istante,

a⃗×
−−→
CP = 0⃗, (189)

dove P è la posizione del punto materiale. La condizione (189) implica che l’accelerazione è
sempre diretta lungo la congiungente CP : non esiste componente dell’accelerazione ortogonale
a tale direzione.

17.4 Moto circolare

Il moto circolare è il moto lungo una traiettoria circolare di centro O e raggio R.

Figura 35: Punto materiale P in moto circolare di raggio R attorno al centro O. L’angolo θ(t)
individua la posizione sulla circonferenza.

17.5 Moto armonico

Il moto armonico è descritto, nella sua forma generale, dalle leggi orarie{
x(t) = A cos(ωt),

y(t) = B sin(ωt),
(190)

dove ω = 2πf = 2π/T è la pulsazione, f la frequenza e T = 1/f il periodo. Quando A = B = R
il moto armonico si riduce al moto circolare uniforme; nel caso unidimensionale (B = 0) si
ottiene l’oscillazione armonica semplice lungo l’asse x29.

29Il moto armonico bidimensionale con A ̸= B descrive un’ellisse; il caso A = B corrisponde alla circonferenza.
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18 Esempi di forze conservative

Si presentano ora i principali esempi di forze conservative che ricorrono nella meccanica del
punto materiale, con le corrispondenti espressioni dell’energia potenziale.

18.1 Forza peso e campo di forza uniforme

Scegliendo un sistema di riferimento con l’asse ȷ̂ parallelo e opposto alla direzione della forza
peso mg⃗, l’energia potenziale associata è

UP (y) = −mgy + C. (191)

Ponendo UP (0) = 0 si ottiene C = 0. L’energia potenziale rimane costante sui piani orizzontali
(y = costante), che rappresentano le superfici equipotenziali per la forza peso.

Quanto detto si generalizza immediatamente a qualsiasi campo di forza uniforme, ossia una
forza della forma F⃗ = α ŵ con α costante e ŵ versore fisso. L’energia potenziale associata è

UF (y) = −α y + C, (192)

dove y è l’ascissa individuata dal versore ŵ. Anche in questo caso, ponendo UF (0) = 0, si ha
C = 0.

18.2 Campi di forza centrali

Si definisce campo di forza centrale il campo vettoriale in R3 della forma

F⃗ = ψ(r) r̂ = ψ(r)
r⃗

∥r⃗∥
, (193)

dove r⃗ è il vettore posizione che individua il punto P rispetto al centro di forza C, r = ∥r⃗∥ è la
distanza da C e ψ(r) è una funzione scalare del solo modulo r.

Figura 36: Sistema di riferimento tridimensionale con il vettore posizione r⃗ dal centro di forza
C (nell’origine) al punto P , e il versore radiale r̂.

Tra i campi di forza centrali rivestono particolare importanza i seguenti.

18.2.1 Attrazione gravitazionale

Se nel centro C è presente una massa M , una massa m posta in P subisce una forza attrattiva
verso C con

ψ(r) = −G Mm

r2
, (194)
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dove G è la costante di gravitazione universale. Il segno negativo indica che la forza è diretta
verso il centro (attrattiva) quando r̂ punta da C verso P .

18.2.2 Attrazione coulombiana

In modo analogo alla gravitazione, la forza elettrostatica tra due cariche q e Q è descritta da

ψ(r) = K
qQ

r2
, (195)

dove K è la costante di Coulomb30. Il segno positivo corrisponde alla natura repulsiva della
forza per cariche dello stesso segno; per cariche di segno opposto il prodotto qQ < 0 rende la
forza attrattiva.

18.2.3 Forza elastica

La forza elastica esercitata da una molla di costante elastica KE e lunghezza a riposo r0 è
descritta da

ψ(r) = −KE (r − r0). (196)

Quando r > r0 la molla è estesa e la forza è diretta verso il centro C (richiamo); quando r < r0
la molla è compressa e la forza è diretta in verso opposto (repulsione). In entrambi i casi la forza
tende a riportare il punto verso la configurazione di equilibrio r = r0.

Figura 37: Forza elastica: nei tre casi illustrati si evidenzia il comportamento della forza per
r = r0 (equilibrio), r < r0 (compressione) e r > r0 (estensione).

19 Energia potenziale nei campi di forze centrali

Nei campi di forze centrali, in cui la funzione di forza ψ dipende esclusivamente dalla distanza
r = |r⃗|, con r⃗ = C⃗P il vettore posizione del punto P rispetto al centro C, l’energia potenziale
assume una forma particolarmente semplice. Poiché la forza è diretta lungo la congiungente con
il centro e il suo modulo è funzione della sola distanza, l’energia potenziale si esprime come

U(r) = −
∫
ψ(r) dr. (197)

Esempio: campo gravitazionale. Nel caso della forza gravitazionale, in cui ψ(r) = −GMm/r2,
si ottiene

U(r) = −
∫ (

−G Mm

r2

)
dr = −GMm

r
. (198)

30Nella notazione SI si ha K = 1/(4πε0), con ε0 la permittività del vuoto.
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La costante di integrazione può essere determinata imponendo il valore dell’energia potenziale
in corrispondenza di particolari valori di r; la convenzione più diffusa consiste nel richiedere
U(r) → 0 per r → ∞31.

19.1 Proprietà del moto in un campo di forze centrali

Un elemento materiale soggetto ad una forza centrale possiede un moto dotato delle seguenti
caratteristiche fondamentali:

1. la traiettoria, detta orbita, giace in un piano fisso passante per il centro di forza;

2. il raggio vettore r⃗ spazza, durante il moto, aree uguali in tempi uguali32.

19.2 Coordinate polari

Per lo studio del moto in un campo centrale è conveniente introdurre le coordinate polari (r, θ)
nel piano dell’orbita.

Figura 38: Sistema di coordinate polari nel piano: il versore r̂ è diretto lungo r⃗, mentre θ̂ è
perpendicolare a r⃗ nel senso positivo del moto. L’angolo θ è misurato a partire dall’asse x
positivo.

Si definiscono due versori: r̂, diretto come r⃗, e θ̂, perpendicolare a r⃗ nel senso positivo del moto.
Le loro espressioni in termini dei versori cartesiani î, ĵ sono

r̂ = cos θ î+ sin θ ĵ, (199)
θ̂ = − sin θ î+ cos θ ĵ. (200)

Interpretazione fisica. I versori r̂ e θ̂ costituiscono una base ortonormale mobile: la loro
orientazione varia con θ e dunque con il tempo. Questa proprietà è alla base delle espressioni
dell’accelerazione in coordinate polari, che contengono termini centripeti e di Coriolis.

20 Campo di forza peso — Applicazione semplice

Si consideri un punto materiale di massa m soggetto al solo campo di forza peso. L’obiettivo è
risolvere l’equazione del moto e ricavare l’equazione oraria nelle tre direzioni dello spazio.

31Tale convenzione è standard in meccanica celeste e nella teoria della gravitazione; con essa l’energia potenziale
risulta sempre negativa per corpi legati gravitazionalmente.

32Questa proprietà è nota come seconda legge di Keplero (legge delle aree) e discende direttamente dalla
conservazione del momento angolare rispetto al centro di forza.
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Figura 39: Punto materiale soggetto alla forza peso P⃗ = mg⃗.

Il campo di forza peso è P⃗ = mg⃗. La seconda legge di Newton ma⃗ = F⃗ diventa, essendo
P⃗ = mg⃗ = −mg î233,

a⃗ = g⃗. (201)

20.1 Risoluzione dell’equazione differenziale

L’equazione ¨⃗x = g⃗ è un’equazione differenziale ordinaria del secondo ordine a coefficienti co-
stanti con termine noto costante. Si procede separando la soluzione in parte omogenea e parte
particolare.

Soluzione omogenea. L’equazione omogenea associata è ¨⃗x = 0⃗. L’equazione caratteristica
λ2 = 0 ammette la radice doppia λ1 = λ2 = 0, da cui

x⃗0(t) = A⃗+ B⃗ t. (202)

Soluzione particolare. Si cerca una soluzione particolare nella forma x⃗P (t) = c⃗ t2. Derivando
si ottiene ˙⃗xP = 2c⃗ t e ¨⃗xP = 2c⃗. Sostituendo nell’equazione del moto:

2c⃗ = g⃗ =⇒ c⃗ =
g⃗

2
. (203)

Soluzione generale. La soluzione generale è dunque

x⃗(t) = A⃗+ B⃗ t+
g⃗

2
t2. (204)

Imponendo le condizioni iniziali x⃗(0) = x⃗0 e ˙⃗x(0) = ˙⃗x0 ≡ v⃗0, si identifica A⃗ = x⃗0 e B⃗ = v⃗0,
ottenendo l’equazione oraria

x⃗(t) = x⃗0 + v⃗0 t+
g⃗

2
t2. (205)

33Si adotta la convenzione per cui î2 è diretto verso l’alto, cosicché g⃗ = −g î2 con g > 0.

52



NOTESTOBOOK

20.2 Proiezione sugli assi del sistema di riferimento

Stabilito un sistema di riferimento R(O, î1, î2, î3), si proietta la relazione vettoriale (205) lungo
ciascun asse. Poiché x⃗(t) =

∑3
k=1(x⃗(t) · îk) îk, si ottiene il sistema di equazioni scalari:

x1(t) = v01 t+ x01, (206)
x2(t) = −1

2 g t
2 + v02 t+ x02, (207)

x3(t) = v03 t+ x03. (208)

Si noti che il termine 1
2 g⃗ t

2 · î1 = 0 e 1
2 g⃗ t

2 · î3 = 0 poiché g⃗ ⊥ î1 e g⃗ ⊥ î3, mentre g⃗ · î2 = −g
essendo g⃗ discorde rispetto a î2.

Figura 40: Sistema di riferimento tridimensionale R(O, î1, î2, î3) con il vettore posizione x⃗(t) e
la forza peso mg⃗ agente sul punto materiale.

20.3 Proiezione della velocità

Derivando l’equazione oraria (205) si ottiene la velocità:

v⃗(t) = ˙⃗x(t) = v⃗0 + g⃗ t. (209)

Proiettando lungo î1, î2 e î3:

v1(t) = v01, (210)
v2(t) = v02 − g t, (211)
v3(t) = v03. (212)

Interpretazione fisica. Le componenti v1 e v3 della velocità restano costanti nel tempo: il
campo gravitazionale uniforme agisce esclusivamente lungo la direzione verticale î2. Si distin-
guono due casi notevoli:

• se v01 = v03 = 0, il moto avviene lungo la verticale passante per x⃗0 (caduta libera o lancio
verticale);

• se v03 = 0 e v01 ̸= 0, il moto è piano nel piano (̂i1, î2): è il caso dei problemi balistici.

20.4 Applicazione — Massa vincolata a una superficie

Si consideri ora un punto materiale di massa m soggetto alla forza peso e vincolato a giacere su
una superficie. L’equazione del moto diventa

ma⃗ = mg⃗ + R⃗, (213)
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Figura 41: Punto materiale nel sistema di riferimento tridimensionale con l’accelerazione di
gravità g⃗ diretta verso il basso e la reazione vincolare R⃗.

dove R⃗ è la reazione vincolare. Stabilendo il sistema di riferimento R(O, î1, î2, î3) con î2 diretto
verso l’alto e la superficie orizzontale, la proiezione lungo i tre assi fornisce:


mẍ1 = (mg⃗) · î1 + R⃗ · î1 = 0,

mẍ2 = (mg⃗) · î2 + R⃗ · î2 = −mg +R2,

mẍ3 = (mg⃗) · î3 + R⃗ · î3 = 0,

(214)

avendo sfruttato il fatto che, per un vincolo liscio orizzontale, R⃗ è diretta lungo î2 e dunque
R⃗ · î1 = R⃗ · î3 = 0.

Figura 42: Punto materiale su superficie orizzontale: la forza peso mg⃗ è diretta verso il basso,
la reazione vincolare R⃗ verso l’alto.

Dalla seconda equazione del sistema (214) si ricava

mẍ2 = −mg +R2. (215)

La reazione vincolare R2 è un’incognita, a priori indeterminata anche nel segno. Tuttavia, se il
corpo è mantenuto in quiete sulla superficie (condizione statica), l’accelerazione lungo î2 è nulla
e si ottiene immediatamente

R2 = mg =⇒ R⃗ = −mg⃗, |R⃗| = mg. (216)

Interpretazione fisica. In condizioni di quiete la reazione vincolare bilancia esattamente la
forza peso: il vincolo “sostiene” il corpo impedendo il moto lungo la verticale. L’accelerazione
lungo î2 è identicamente nulla.
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21 Campo di forza peso con massa–molla — Applicazione

Si consideri un punto materiale di massa m collegato ad una molla ideale e soggetto alla forza
peso. L’analisi viene condotta in due sistemi di riferimento distinti, mostrando come la scelta
delle coordinate semplifichi l’equazione del moto.

Figura 43: Primo sistema di riferimento: la massa m è sospesa alla molla nella configurazione di
riferimento. L’origine è posta in modo che la posizione naturale della molla corrisponda a x01.

Figura 44: Secondo sistema di riferimento: l’origine è traslata nella posizione di equilibrio statico
della massa, cosicché x01 = 0.

21.1 Modello della molla ideale

Per una molla ideale a risposta lineare, la forza elastica è data da

F⃗e = −K (l − l0) ÂB, (217)

dove K > 0 è la costante elastica, l0 la lunghezza di riferimento, l la lunghezza attuale e ÂB il
versore che definisce la direzione tra i due estremi della molla.

21.2 Equazione del moto nel primo sistema di riferimento

Le forze agenti sulla massa sono la forza peso P⃗ = mg⃗ = −mg î2, la reazione vincolare R⃗ = R î2
e la forza elastica. L’equazione vettoriale del moto è

ma⃗ = mg⃗ + R⃗+ F⃗e = mg⃗ + R⃗−K(x1 − x01) î1. (218)
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Figura 45: Molla ideale: AB = l0 è la lunghezza di riferimento (a riposo), AB′ = l è la lunghezza
nella configurazione deformata.

Proiettando lungo î1, î2 e î3: 
mẍ1 = −K(x1 − x01),

mẍ2 = −mg +R2,

mẍ3 = 0.

(219)

Si osservi che nella prima equazione il termine x01 è una costante (la posizione naturale della
molla), non una funzione del tempo. Il sistema si riscrive come

mẍ1 +K x1 = K x01 (equazione non omogenea),

mẍ2 = −mg +R2 (equazione algebrica se il vincolo impedisce il moto),

mẍ3 = 0 (componente nulla).

(220)

21.3 Equazione del moto nel secondo sistema di riferimento

Se si sceglie un secondo sistema di riferimento con origine nella posizione di equilibrio statico
della molla, si ha x01 = 0. La forza elastica diventa semplicemente F⃗e = −K x′1 î1, e la prima
equazione del sistema (220) si semplifica in

mẍ′1 +K x′1 = 0 =⇒ ẍ′1 +
K

m
x′1 = 0. (221)

La natura fisica del sistema non è stata modificata: si è semplicemente scelto un sistema di
coordinate che rende omogenea l’equazione differenziale34.

21.4 Soluzione dell’equazione dell’oscillatore armonico

Poiché K > 0 e m > 0, si definisce la pulsazione naturale

ω =

√
K

m
=⇒ ω2 =

K

m
. (222)

34Questa tecnica è del tutto generale: traslando l’origine nella posizione di equilibrio statico, il termine forzante
costante (dovuto alla gravità) viene assorbito nella nuova variabile, e l’equazione del moto assume la forma
canonica dell’oscillatore armonico.
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L’equazione (221) diventa
ẍ1 + ω2 x1 = 0, (223)

la cui soluzione generale è
x1(t) = A cos(ω t) +B sin(ω t), (224)

dove le costanti A e B si determinano imponendo le condizioni iniziali sulla posizione e sulla
velocità.

Interpretazione fisica. Il moto lungo î1 è un moto armonico semplice di pulsazione ω: la
massa oscilla attorno alla posizione di equilibrio con periodo T = 2π/ω = 2π

√
m/K. Maggiore

è la rigidezza K della molla, più rapida è l’oscillazione; maggiore è la massa m, più lenta.

21.5 Analisi delle componenti residue

Per quanto riguarda la direzione î2, l’equazione mẍ2 = −mg + R2 è l’unica che contiene la
reazione vincolare, che è un’incognita di tipo algebrico. Se il vincolo impedisce il moto lungo î2
(cioè ẍ2 = 0), l’equazione diventa algebrica e non differenziale, fornendo direttamente il valore
di R2.

Nel caso in cui sia presente anche una forza esterna F⃗ = F î2 applicata alla massa, l’equazione
lungo î2 diventa

mẍ2 = −mg + F +R2. (225)

In condizioni statiche (ẍ2 = 0) si ricava

R2 = mg − F. (226)

Affinché il vincolo di appoggio sia attivo (il corpo rimanga a contatto con la superficie), deve
risultare R2 > 0, il che richiede F < mg35.

Lungo î3 si ha semplicemente mẍ3 = 0, che conferma l’assenza di moto in tale direzione.

22 Esempio di cinematica del punto materiale

Si consideri un punto materiale di massa m nel sistema di riferimento R(O, î1, î2, î3), soggetto
al campo di forza peso. L’equazione oraria che specifica il moto è

x⃗(t) =
1

2
g⃗ t2 + v⃗0 t+ x⃗0, (227)

dove x⃗(t) =
∑3

k=1(x⃗(t) · îk) îk.

Si tratta in generale di un moto nello spazio tridimensionale. Dall’equazione vettoriale (227) si
passa al sistema di equazioni scalari proiettando lungo i versori îk:

x1(t) = v01 t+ x01,

x2(t) = −1

2
g t2 + v02 t+ x02,

x3(t) = v03 t+ x03,

(228)

35Se F ≥ mg la reazione vincolare si annullerebbe o diventerebbe negativa, il che per un vincolo di appoggio
(unilaterale) significa che il corpo si stacca dalla superficie e l’equazione del moto cambia natura.
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Figura 46: Sistema di riferimento tridimensionale con il vettore posizione x⃗(t) del punto materiale
e l’accelerazione di gravità g⃗ diretta verso il basso.

dove si è utilizzato g⃗ · î1 = 0 (poiché g⃗ ⊥ î1), g⃗ · î2 = −g (poiché g⃗ è discorde rispetto a î2) e
g⃗ · î3 = 0 (poiché g⃗ ⊥ î3).

Considerando anche la velocità, si ha v⃗(t) = dx⃗(t)/dt, e derivando le espressioni (228):
v1(t) = v01,

v2(t) = −g t+ v02,

v3(t) = v03.

(229)

Anche in questo caso si distinguono i medesimi casi notevoli: se v01 = v03 = 0 il moto è verticale;
se v03 = 0 e v01 ̸= 0 il moto è piano nel piano (̂i1, î2), configurando il caso dei problemi balistici.

23 Gradi di libertà

Il concetto di grado di libertà (degree of freedom, DOF) è fondamentale per la descrizione dei
sistemi meccanici vincolati. Per grado di libertà si intende il numero di variabili indipendenti
necessarie per determinare univocamente la posizione di un sistema nello spazio.

Un punto materiale in uno spazio a tre dimensioni possiede 3 gradi di libertà. Se il punto è
vincolato a muoversi su una superficie, i gradi di libertà si riducono a 2; se deve muoversi lungo
una curva, il grado di libertà è 1.

Sistemi di n punti. La trattazione si estende naturalmente a un sistema particellare di n
punti. In assenza di vincoli il sistema possiede

3n gradi di libertà. (230)

In presenza di R vincoli indipendenti, i gradi di libertà residui sono

P = 3n−R, (231)

dove P rappresenta anche il numero di incognite ausiliarie36 necessarie per descrivere il sistema.
36Più precisamente, P è il numero di coordinate generalizzate (o parametri lagrangiani) necessarie per descrivere

la configurazione del sistema. Le R equazioni di vincolo eliminano altrettante variabili.
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Corpo rigido. Un corpo rigido non possiede 3n gradi di libertà (dove n è il numero di punti
che lo compongono), bensì soltanto 6 gradi di libertà: 3 di traslazione e 3 di rotazione.

Interpretazione fisica. I vincoli “inibiscono” alcune direzioni del moto, riducendo il nume-
ro di parametri indipendenti necessari a descrivere la configurazione. Per vincolo si intende
qualsiasi condizione che limita il moto; le forze associate sono dette forze vincolari o reazioni
vincolari.

23.1 Vincoli ideali

Figura 47: Rappresentazione schematica dei due tipi di vincolo ideale: vincolo di appoggio (a
sinistra) e vincolo di appartenenza (a destra).

Un vincolo liscio è un vincolo ideale, privo di attrito, che esercita reazioni punto per punto
ortogonali alla geometria del vincolo stesso. Si distinguono due tipologie fondamentali.

Vincolo di appoggio. Il vincolo di appoggio non riduce formalmente i gradi di libertà del
sistema, ma rende inaccessibile un semispazio al punto materiale. Negli intervalli di tempo in
cui il punto rimane in contatto con la superficie del vincolo, sono necessari soltanto 2 parametri
per definire univocamente la posizione. L’unica incognita ausiliaria è la reazione normale R⃗N ,
il cui verso è diretto dalla superficie verso l’elemento37.

Vincolo di appartenenza. Il vincolo di appartenenza esercita la reazione normale R⃗N in
entrambi i versi rispetto al punto materiale, sempre ortogonalmente alla superficie. A differenza
del vincolo di appoggio, il punto materiale è costretto a rimanere sulla superficie in ogni istante38.

37Il vincolo di appoggio è unilaterale: la reazione vincolare può agire in un solo verso. Se le condizioni dinamiche
richiedessero una reazione nel verso opposto, il contatto si interrompe e il vincolo cessa di essere attivo.

38Il vincolo di appartenenza è bilaterale: la reazione vincolare può assumere qualsiasi segno, impedendo al punto
di allontanarsi dalla superficie sia in un verso che nell’altro.
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