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1 Equilibrio e stabilita di un punto materiale a tre gradi di
liberta

Lo studio dell’equilibrio e della stabilita per un punto materiale con tre gradi di liberta rappre-
senta la naturale generalizzazione del caso unidimensionale. Dal punto di vista concettuale non
vi sono elementi sostanzialmente nuovi rispetto al caso piu semplice; tuttavia, anziché trattare
una singola equazione scalare, ci si trova a gestire un sistema di equazioni scalari accoppiate, la
cui risoluzione richiede un procedimento algebrico sistematico.

Formulazione del problema. Consideriamo un punto materiale di massa m soggetto ad una
risultante delle forze

F = f(& 1), (1)

dove f rappresenta la risultante delle forze agenti sul punto e non una forzante esterna nel senso
di un termine che impone un moto prestabilito.!

La condizione di equilibrio richiede che
F(Z.,0,t) =0, (2)

ovvero la risultante delle forze deve annullarsi nella posizione Z. quando la velocita & nulla, e tale
condizione deve valere per ogni istante ¢ € R. E fondamentale specificare non solo che 7, sia un
punto di equilibrio, ma anche che 7, = 0: in caso contrario la velocita potrebbe essere costante
ma non nulla, con accelerazione & = 0, configurando un moto rettilineo uniforme anziché un
vero equilibrio.

Perturbazione dell’equilibrio. Per analizzare il comportamento del sistema in prossimita
dell’equilibrio, si introduce una perturbazione

f(t) = Te + f/(t)a (3)

dove Z'(t) rappresenta una piccola deviazione dalla posizione di equilibrio. Il termine “pertur-
bare” indica qui l’assegnazione di condizioni iniziali che collocano il sistema in un intorno del
punto di equilibrio.

Nel caso unidimensionale del pendolo, ad esempio, si linearizza 1’equazione del moto attorno alle
posizioni di equilibrio # = 0 e = w. La linearizzazione & valida solo in un piccolo intorno di
tali punti e permette di determinare se 1’equilibrio sia stabile, instabile o indifferente. Nel punto
6 = 0 si osserva un moto armonico (eventualmente smorzato), indicativo di stabilita o stabilita
asintotica; nel punto § = m compaiono esponenziali reali divergenti, segno di instabilita. Si
tratta dunque di uno studio rigorosamente locale.

Linearizzazione della risultante delle forze. Applicando I'espansione in serie di Taylor
della funzione vettoriale F'(Z, ¥, t) attorno alle condizioni di equilibrio (%, 0, t), troncata al primo
ordine, si ottiene:

. . OF
‘(xfxe)ﬁLi
81‘6

Lo Lo OF
F _‘a_‘at ~ F _»7071; 0=
@30~ F@.00+ 57|

Te

(Z-0)+ 0, ). (4)

S
1Si sottolinea la distinzione terminologica: f ¢ la risultante delle forze che determinano la dinamica del sistema,
non un termine forzante che prescrive il moto.
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Figura 1: Schema del pendolo semplice: la massa m e sospesa ad un filo di lunghezza ¢ incer-
nierato nel punto A. L’angolo # misura lo scostamento dalla verticale.

Per una funzione vettoriale f : R" — R™, dove f (Z) = (f1(@),. .., fm(Z)), U'espansione di Taylor
al primo ordine attorno ad un punto @ assume la forma generale

— —

f(@) =~ fa) + Jg(a@) - (Z — a), (5)
dove Jy ¢ la matrice jacobiana
FOf1 . Oft 7
. (@) D, (@)
Jp = (6)
8fm — 8fm —
L 021 (@) oxy, (a)_
Tenendo conto che F (56,6,t) = 0 per definizione di equilibrio, e introducendo le notazioni

Z—Z. =1 eZ—0=2a", I'espansione (4) si riscrive in forma indiciale come

i, 1=1,2,3 (7)
i}

Introduzione delle matrici caratteristiche. Per esprimere I’equazione in forma matriciale,
si definisce la matrice di massa mediante il delta di Kronecker:

0
0 (8)

My = mé, ovvero M =

oo 3

0
m
0 m
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Si introduce quindi la matrice di smorzamento

of of on
0t1 0o O3
afi Ofy 0fy 0Of2
Gy = — —2- G=—-| 2% = == 9
©T dikl g Oiy 0ir iy || o )
Ofs 0fs Ofs |
0i1 0o Ofs
e la matrice di rigidezza
al‘l 8562 8%3
Koo 0| o |0R O on o)
al"k (fe,ﬁ) - 81’1 8.7}2 8.1‘3 @ 6)
8951 8:62 8%3
L’equazione linearizzata assume quindi la forma tensoriale
Mi+Gi+ Kz=0, (11)

che costituisce un’equazione differenziale vettoriale del secondo ordine, equivalente ad un sistema
di tre equazioni differenziali scalari accoppiate. Nel seguito si omette ’apice sulla perturbazione,
intendendo che x rappresenta lo scostamento dall’equilibrio.

Interpretazione fisica. La matrice M codifica I'inerzia del sistema; la matrice G descrive gli
effetti dissipativi o giroscopici che dipendono dalla velocita; la matrice K caratterizza le forze
di richiamo elastico o, piu in generale, le forze posizionali linearizzate. ﬁsegno negativo nelle
definizioni di G e K ¢ scelto affinché, per sistemi conservativi stabili, queste matrici risultino
definite positive.

1.1 Risoluzione dell’equazione differenziale vettoriale

Per risolvere ’equazione (11) si introduce il cambio di variabili che trasforma il sistema del
secondo ordine in un sistema del primo ordine di dimensione doppia. Si pone

y=2z, (12)

e si definisce il vettore di stato
X1
T2

[S
Il
——

< |8

I
Z2

L’equazione del moto si riscrive nella forma
Aw = Cuw, (14)

dove le matrici a blocchi sono definite come

il el )

([
|
D1~
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Il prodotto matriciale esplicito conferma la coerenza della formulazione:

o = o B a0

che restituisce z = y dalla prima riga e I’equazione del moto originale dalla seconda.

(=

Assumendo che la matrice A sia invertibile,? si ottiene

w=Sw, dove S=A"'C. (17)

Questa & un’equazione differenziale vettoriale del primo ordine, la cui soluzione generale si cerca
nella forma
w=zeM, (18)

™

dove z € un vettore costante e A\ uno scalare da determinare.

Sostituendo nell’equazione (17):

)\ge)\t —

zeM, (19)

Jiep

@

Poiché e # 0 per ogni t e ogni A, si ottiene il problema agli autovalori
(S~AD)z=0. (20)
Gli autovalori Ay si determinano imponendo
det(S — \I) = 0, (21)

che fornisce sei autovalori (reali o complessi coniugati) per il sistema a tre gradi di liberta. Per
ciascun autovalore A\ si calcola ’autovettore associato 2(®) risolvendo

(8 =MD" =0. (22)
La soluzione generale ¢ quindi
6
w(t) = Z e 2P et (23)
k=1

dove le costanti ¢ sono determinate dalle condizioni iniziali.

Interpretazione fisica e criterio di stabilita. Il comportamento asintotico del sistema
dipende dalla natura degli autovalori Ag:

e Se tutti gli autovalori hanno parte reale negativa, ogni termine esponenziale decade nel
tempo e ’equilibrio e asintoticamente stabile.

e Se almeno un autovalore ha parte reale positiva, il corrispondente termine esponenziale
diverge e 'equilibrio ¢ instabile.

e Se tutti gli autovalori hanno parte reale non positiva, con almeno uno puramente immagi-
nario, l'equilibrio ¢ semplicemente stabile (nel caso conservativo) o richiede un’analisi
piu approfondita.

Dalla struttura del vettore di stato w(t) = (x1, 2, 23,41, 42,43)", le prime tre componenti
forniscono direttamente I’evoluzione temporale della perturbazione di posizione.

8
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Figura 2: Pendolo semplice: la massa m & vincolata a muoversi su un arco di cerchio di raggio
R. I’angolo 6 ¢ misurato dalla verticale discendente.

2 Applicazione: pendolo semplice a un grado di liberta

2.1 Primo metodo: linearizzazione diretta

L’equazione del moto per il pendolo semplice si ricava proiettando la seconda legge di Newton
lungo la direzione tangente alla traiettoria. Indicando con s = R6 ’ascissa curvilinea e con
F = mg la forza peso, si ha

—

m§=F-é = —mgsin0, (24)

dove é; ¢ il versore tangente orientato nel verso di # crescente. Sostituendo s = R#:

mRO + mgsin b = 0, ovvero 6+ %sin@ =0, (25)
avendo posto £ = R.
Le posizioni di equilibrio si trovano imponendo f(0) = —mgsinf =0, da cui 04 =0 e g = 7.

Stabilita nel punto A (f4 = 0). Perturbando attorno a 64, con 6(t) = 64+6'(t), espansione
di Taylor fornisce

~ 9f

f(0) =~ 20 0'(t) = —mgcos(0) - 0'(t) = —mgb'(t). (26)
0
L’equazione linearizzata diventa
b'(t) + %9’@) = 0. (27)

L’equazione caratteristica x + g/¢ = 0 ha radici x1 2 = +jw, dove w = /g/. Trattandosi di
radici puramente immaginarie, il moto ¢ armonico e ’equilibrio ¢ stabile.

Stabilita nel punto B (fp = 7). Procedendo analogamente:

f(0) ~ —mgcos(m) - 0'(t) = +mgb'(t), (28)

2Tale ipotesi & verificata quando la matrice di massa & non singolare, condizione sempre soddisfatta per m > 0.

9
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da cui

b'(t) - %9’@) = 0. (29)

L’equazione caratteristica x> — g/¢ = 0 ha radici reali x1 2 = +/g/f. La presenza di una radice
positiva implica che I'equilibrio ¢ instabile: una piccola perturbazione produce uno scostamento
che cresce esponenzialmente nel tempo.

2.2 Secondo metodo: approccio energetico

Essendo F = mg un campo conservativo, esiste un’energia potenziale U tale che F = —VU.
Scegliendo ’asse x5 verticale ascendente:

oU
e = M9 = U = mgxs + cost. = mgh + cost. (30)
Z2

In coordinate intrinseche, utilizzando s = R#:

ou . oUu .
_g = —-mg Slng’ = % = ngsmH. (31)

Le condizioni di equilibrio 0U/90 = 0 forniscono nuovamente 04 =0 e g = 7.

Interpretazione fisica. L’energia potenziale ha un minimo locale in 84 = 0 (posizione piu
bassa) e un massimo locale in g = 7 (posizione piu alta). Il teorema di Lagrange-Dirichlet
garantisce che un minimo dell’energia potenziale corrisponde ad un equilibrio stabile, mentre un
massimo corrisponde ad un equilibrio instabile.?

3 Equilibrio e stabilita a due gradi di liberta

Figura 3: Rappresentazione tridimensionale di una superficie di energia potenziale. 1l vettore g
indica la direzione della gravita.

311 teorema di Lagrange-Dirichlet afferma che se 'energia potenziale ha un minimo stretto in una configurazione
di equilibrio, allora tale equilibrio & stabile.

10
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Consideriamo ora un sistema a due gradi di liberta, caratterizzato da una funzione f : R? — R
che descrive la superficie su cui il punto materiale ¢ vincolato a muoversi:

z(x,y) = —sinzsiny. (32)

L

Figura 4: Andamento tridimensionale della superficie z(z,y) = —sinzsiny, che presenta una
struttura periodica di massimi e minimi.

I
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Figura 5: Vista dall’alto della superficie z(z,y) = —sinx siny. I cerchi rossi tratteggiati indicano
i massimi locali, i cerchi neri tratteggiati i minimi locali.
La vista dall’alto della funzione z(z,y) = — sinx sin y rivela una struttura periodica di massimi

e minimi locali distribuiti regolarmente nel piano (x,y).

3.1 Energia potenziale e condizioni di equilibrio

L’energia potenziale associata al campo gravitazionale per un punto materiale vincolato sulla
superficie z(z,y) ¢ data da
U(z,y) =mgz(x,y) + Uy = —mgsinxsiny + C, (33)

dove C' ¢ una costante arbitraria.?

Le derivate parziali dell’energia potenziale sono

ou . oU .
— = —mgcosxsiny, — = —mgsinx cosy. (34)
ox oy

4La scelta della costante C' non influenza le condizioni di equilibrio né la stabilita, poiché solo le derivate di U

intervengono nell’analisi.

11
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I punti di equilibrio si determinano imponendo ’annullamento simultaneo di entrambe le deri-
vate. Poiché m,g > 0, le condizioni

(35)

cosxsiny =0
sinzcosy =0

sono soddisfatte per tutte le combinazioni di z = 0, , , 3777, 2rey=0,3,m, 37“,

individuate le posizioni di equilibrio, ma resta da determinare la loro natura.

27. Si sono cosl

3.2 Analisi di stabilita mediante matrice hessiana

La stabilita degli equilibri in sistemi a due gradi di liberta si studia attraverso la matrice
hessiana dell’energia potenziale, definita come

U o
 NUge Ugy| | 022 0x0y

H(U)_[Uyw Uyy]_ 0*U 827U ' (36)
Ooyox  Oy?

Per il teorema di Schwarz, se le derivate seconde miste sono continue, si ha Uy, = Uy, garantendo
la simmetria della matrice hessiana.

Condizioni per l’equilibrio stabile. Un punto di equilibrio (z.,y.) ¢ stabile (minimo
relativo dell’energia potenziale) se la matrice hessiana ¢ definita positiva. Cio richiede:

1. ZU = 88U =0 (condizione di equilibrio);

z (xmye) Y (Ieyye)

2
2. aag] > 0;

T e ye)

2
0*U 0?U 0*U
3. det(H)}(We) = 02 Fa — (wa ) > 0.
(5567316) Y ($e7ye) Yy (x&ye)

Condizioni per I’equilibrio instabile. Un punto di equilibrio ¢ instabile (massimo relativo
dell’energia potenziale) se la matrice hessiana ¢ definita negativa. Le condizioni sono:

oU oU
Uleye) Y lwee)
0*U
x (ze:ye)
3. det(H)| (g > 0
Applicazione al punto (Z,Z). Per la superficie z(z,y) = —sinzsiny, la matrice hessiana
272
dell’energia potenziale U(z,y) = —mgsinz sin y risulta
H(z,y) = mg sinzsiny —cosxcosy (37)

—cosrcosy sinxsiny

12
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Valutando nel punto (%, g)

Si verifica che:

o det(H) = (mg)? > 0;
o
8:1;2 (7\' 7\')

272

=mg > 0;

e le derivate prime si annullano nel punto.

(38)

Poiché tutte le condizioni per la definitezza positiva sono soddisfatte, il punto (%, g) ¢ un

equilibrio stabile.’

o

Figura 6: Rappresentazione tridimensionale della superficie z(z,y) = —sinxsiny. Il punto m

indica una posizione di equilibrio, con la forza peso mg diretta verso il basso.

Un ragionamento analogo si applica alla superficie z(x,y) = sinx siny, con energia potenziale

U(z,y) = mgsinxsiny, che presenta la stessa struttura di punti critici.

3.3 Punto di sella

Consideriamo la funzione f : R? — R definita da

2(z,y) = 22 — 2. (39)
L’energia potenziale associata ¢
Ulz,y) = mg(z* — y*) + Uo. (40)
Le derivate prime sono
g—g = 2mgz, ZZ = —2mgy. (41)
5Si noti che per la superficie z(z,y) = —sinzsiny, questo punto corrisponde ad un minimo della quota,

coerentemente con la stabilita dell’equilibrio.

13
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Figura 7: Curve di livello della funzione U(z,y) = mgsinx siny. I cerchi neri indicano i minimi
locali (equilibri stabili), i cerchi rossi i massimi locali (equilibri instabili).

Figura 8: Superficie a sella (paraboloide iperbolico) z(z,y) = x? — 3. Il punto nero indica il
punto di sella nell’origine.

Imponendo 'annullamento simultaneo si ottiene I'unico punto di equilibrio

P. =(0,0). (42)
La matrice hessiana risulta
H(z,y) = [2739 _2(7)719] = 2myg [(1) _01] : (43)
Il determinante e
det(H) = (2mg)(—2mg) = —4m?¢* < 0. (44)

Interpretazione fisica. Quando il determinante della matrice hessiana é negativo, la matrice
¢ indefinita e il punto critico ¢ un punto di sella. Il comportamento dipende dalla direzione
della perturbazione:

o perturbando lungo il piano zz (dove la superficie & concava verso 'alto), il punto oscilla
attorno a P.: comportamento localmente stabile;

o perturbando lungo il piano yz (dove la superficie & concava verso il basso), il punto si
allontana indefinitamente da P.: comportamento instabile.

Dal punto di vista matematico rigoroso, 1’equilibrio non ¢ né stabile né instabile nel senso di
Lyapunov. Tuttavia, dal punto di vista ingegneristico, poiché esiste almeno una direzione di

instabilita, il sistema si considera instabile.

14
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4 Meccanica dei sistemi di punti materiali

Per sistema di punti materiali si intende un insieme di N punti materiali, ciascuno libe-
ro di muoversi nello spazio, ma la cui dinamica non ¢ indipendente da quella degli altri. I
punti si scambiano forze reciproche (gravitazionali, coulombiane, elastiche, ecc.), cosicché una
sollecitazione agente su uno di essi influenza 1’evoluzione del moto di tutti gli altri.

4.1 Dinamica delle singole particelle

Per ogni particella k-esima vale la seconda legge di Newton:
- _ 2 _ RE | @l

dove F}f rappresenta la risultante delle forze esterne e ﬁ,f la risultante delle forze interne agenti
sulla particella k, con k=1,..., N.

-

SINGOCA PARTICELLL =7

K> & (p
Fopin AGEWTE
il -gve K

ECEM . 1 TAAAP

—:c' —53't COATM

€ fag-

A
Ly
Figura 9: Sistema di riferimento con origine O e tre particelle. La forza F, Ifj e la forza esercitata

dalla particella j sulla particella k; per il terzo principio, F_)ﬁ: = —F}f =

La forza interna sulla particella k e la somma delle forze esercitate da tutte le altre particelle:
N

Bl =S F, (46)
j=1

dove per convenzione Fklk = 0 (una particella non esercita forza su se stessa).

Per la terza legge di Newton, le forze interne sono a coppie uguali e opposte:

ﬁlgj =— F’jlk, ovvero  F, i+ Fﬁ; 0. (47)

4.2 Momento delle forze interne

Consideriamo il momento rispetto ad un polo generico 7y delle forze interne scambiate tra due
particelle k e j:
(P — 7o) x Fylj + (7 — 7o) x Fjj, = 0. (48)

Dimostrazione. Aggiungendo e sottraendo 7 X ijk e riorganizzando i termini:

(’Fk — 770) X Fklj + (77] — T_"o) X ka + 7 X Fjlk — 7 X Fjlk

= T} X (ﬁlgj"_ﬁjlk) — 7o X (ﬁkljJrﬁfk)Jr(Fj—Fk) X ﬁj]k

= (7 — 70) x (Fj + Fjf) + (7 — 7)) x Ffy, = 0. (49)
—
5 17,

15
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Il primo termine si annulla per la terza legge di Newton. Il secondo termine si annulla perché le
forze interne sono dirette lungo la congiungente le due particelle, quindi (r; — 7%) € parallelo a
FI.

jk

Figura 10: Hlustrazione della nullita del momento delle forze interne: le forze F'kl ;e ﬁj[k giacciono
sulla retta congiungente le particelle.

Risultante delle forze interne. Sommando su tutte le particelle:

N N N
FI=N"F[=>YF,=0 (50)
k=1 k=1j=1

La dimostrazione segue dalla terza legge di Newton: ogni coppia di termini F, kI ;T F"j]k si annulla,

e i termini diagonali Fk{k sono nulli per definizione.

Momento totale delle forze interne. Il momento totale delle forze interne rispetto ad un
polo generico Zj €
N
Mg = (& — o) x F} =0. (51)
k=1

Interpretazione fisica. Ogni coppia di forze interne scambiate tra due particelle costituisce
una coppia di forze uguali e opposte giacenti sulla stessa retta d’azione. Il momento di tale
coppia rispetto a qualunque polo € nullo.

4.3 Conservazione della quantita di moto

Sommando le equazioni del moto per tutte le N particelle:

N s N
ko_ SE Bl
Wi —Z(Fk + Fy,). (52)
k=1 k=1
Poiché 1, F T = 0, si ottiene
N g N
k R E
ka%_ZFk. (53)
k=1 k=1
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Assumendo che le masse siano costanti nel tempo, la derivata puod essere portata fuori dalla
sommatoria:

d N N
- > muty =Y FF (54)
k=1 k=1

Definendo la quantita di moto della particella k-esima come ¢, = miv; e la quantita di

moto totale come
= G=>_ ml, (55)

si ottiene '’equazione di conservazione della quantita di moto:

dqg =
“_ g (56)
dove FF = é\[:l F}f ¢ la risultante delle forze esterne.

Interpretazione fisica. Se la risultante delle forze esterne & nulla, FE = 0, la quantita di
moto totale si conserva: ¢ = costante. In generale, un sistema di N particelle libere nello spazio
possiede 3N gradi di liberta, richiedendo 3N parametri per determinare univocamente lo stato
del sistema.

4.4 Centro di massa

Esiste un punto dello spazio, detto centro di massa, le cui coordinate sono definite come la
media pesata delle coordinate delle singole particelle con pesi pari alle rispettive masse.

Definita la massa totale del sistema come

N
M = Z mpg, (57)
k=1
il vettore posizione del centro di massa ¢
N
fo = 7 (58)
T = — MLy
G M £ kLk

Riscrivendo questa relazione:

Interpretazione fisica. Il centro di massa rappresenta il punto in cui si puod immaginare
concentrata l'intera massa del sistema. Si noti che il centro di massa puo corrispondere ad una
posizione dello spazio in cui non € presente alcuna massa fisica.

Derivando la (58) rispetto al tempo:
N
Mg = Z MUk = q. (60)
k=1

Pertanto la quantita di moto totale del sistema coincide con la quantita di moto di una particella
fittizia di massa M posta nel centro di massa e dotata della velocita .
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4.5 Momento delle forze inerziali rispetto al centro di massa

Consideriamo un campo di forze inerziali della forma F; ,f = mygd, dove @ & un’accelerazione
uniforme (costante nello spazio). Il momento totale di questo campo rispetto al centro di massa

N

e
N

N
Mg:}]@—ﬁdem®=<Z)m@wﬁboXﬁzd (61)
k=1 k=1

dove si e sfruttata la bilinearita del prodotto vettoriale e la proprieta (59).

Interpretazione fisica. Qualunque sollecitazione associata ad un campo di forze inerziali uni-
forme (come il campo gravitazionale terrestre approssimato costante) ha momento nullo rispetto
al centro di massa. In questa approssimazione, il centro di massa coincide con il baricentro del
sistema.

4.6 Equazione del moto del centro di massa

Derivando ulteriormente la (60):

g d,. L.
zf = =(Mic) = Mag = F”. (62)

Questa ¢ 'equazione del moto del centro di massa: il centro di massa si muove come se
fosse una particella di massa M soggetta alla risultante delle sole forze esterne. Le forze interne,
per quanto complesse, non influenzano il moto del centro di massa.

| ALS
_:StHPIO E'SPL!:’:JOJJ_

]
| A et ':t-’-' -

Figura 11: Esempio di esplosione: una massa m si frammenta in due parti my e ms. Il centro
di massa G continua a muoversi secondo la traiettoria determinata dalle sole forze esterne (in
questo caso, la gravita).

11 centro di massa Z;(t) di un sistema di N particelle ¢ definito come
| N
Ta(t) = 57 D min(t), (63)
k=1
dove M = legvﬂ my. rappresenta la massa totale del sistema.

Esempio: esplosione di un corpo. Consideriamo un corpo di massa m inizialmente in
quiete su un piano orizzontale che, a seguito di un’esplosione, si frammenta in due parti di
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masse mi e mg, con M = mq +mo. L’esplosione & conseguenza della liberazione di forze interne
al sistema; pertanto, il moto del centro di massa non & influenzato dall’evento.

In assenza di forze esterne orizzontali, la condizione di equilibrio verticale per ogni punto prima
dell’esplosione ¢
-mg+Ry=0 = FEF=0. (64)

Dalla prima equazione cardinale dei sistemi di punti materiali, se la risultante delle forze esterne
é nulla:

diag  =pn =
% —FF=0 = g = costante. (65)

Interpretazione fisica. La quantita di moto del sistema si conserva prima e dopo ’esplosione.
Il centro di massa, se inizialmente in quiete, rimane in quiete (nel riferimento orizzontale); se
era in moto, continua con velocita costante. Indicando con ¢y 'istante in cui il centro di massa
G raggiunge una certa quota, la relazione cinematica del sistema &

Mfg(t) = m1T (t) + mng(t). (66)
5 Momento delle forze esterne rispetto a un polo generico

Per ottenere informazioni piu dettagliate sulla dinamica del sistema, si considera il momento
delle forze esterne rispetto a un polo generico #y. Per la singola particella k-esima:

- - L dv;
Mfk = (T — o) X mkd—:. (67)
Sommando su tutte le particelle del sistema:
al i
ME =S "(# -7 —= 68
0 kz_:l(wk To) x my—, (68)

5.1 Momento totale delle forze

La risultante delle forze agenti sulla particella k-esima ¢ Fy, = ﬁ,f + ﬁ,f . Il momento totale
rispetto al polo Ty risulta
N
Mo = (& — %) x Fy =
k=1 k=1

(T — To) x (FL + EP). (69)

hE

Poiché la risultante delle forze interne & nulla, FI = ZkN:1 F’}CI = 0, e il momento delle forze
interne rispetto a qualunque polo e anch’esso nullo, si ha

N
M():M(]E:Z(fk—fo) XﬁkE (70)
k=1

5.2 Equazione di conservazione del momento della quantita di moto

Partendo dalla seconda legge di Newton per la particella k-esima:
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si moltiplica vettorialmente per (Zy — Zy) e si somma su tutte le particelle:

N A5 N
- - k > o oFE
Z(mk — 1‘0) X mkﬁ = Z(mk .ro) X Fk . (72)
k=1 k=1
Assumendo che le masse my, siano costanti nel tempo, 'operatore derivata pud essere portato
fuori dalla sommatoria. Si definisce il momento della quantita di moto del sistema rispetto

al polo Zy:
N N

k=1 k=1

Sviluppando la derivata temporale di l_iO:

dhy & N 47,
dTU _ ;(ak — Ty) X My + kzl(fk — %) x kaf. (74)

Il primo termine si semplifica osservando che ¥, X ¥ = 0, mentre il secondo termine coincide
con il momento delle forze.®

Si ottengono cosi le due equazioni cardinali della meccanica dei sistemi:

dq

o= FE  (Prima equazione cardinale), (75)
dhoy  —p . . .
= My — vy x Mug (Seconda equazione cardinale). (76)

Interpretazione fisica. La prima equazione cardinale descrive la dinamica del centro di massa
Zq del sistema: il centro di massa si muove come se fosse un punto materiale di massa M
soggetto alla risultante delle sole forze esterne. La seconda equazione cardinale descrive il moto
delle particelle del sistema rispetto al centro di massa.”

6 Momento della quantita di moto rispetto al centro di massa

Per analizzare il moto del sistema di particelle attorno al centro di massa, si riscrive ﬁg aggiun-
gendo e sottraendo opportunamente Z¢ e Ug:
N
ho =Y (& — T + Fa — To) x my(Ty — g + V). (77)
k=1

Sviluppando il prodotto e sfruttando la proprieta fondamentale del centro di massa, Zivzl m(Zr—
Zq) = 0, si dimostra che diversi termini si annullano. Dopo i calcoli si ottiene:

ho = ha + (Tg — Zo) x Mg, (78)
dove
N
hG = Z(fk — f@) X mki_fk (79)
k=1

¢ il momento della quantita di moto del sistema rispetto al centro di massa.

5Nel caso in cui il polo &y sia mobile, compare un termine aggiuntivo proporzionale a ¥o.
-
"Nel caso particolare in cui il polo &y sia fisso (o = 0) o coincida con il centro di massa, il termine ¥y X Mg
si annulla.
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Interpretazione fisica. Il momento della quantita di moto rispetto a un polo generico Ty €
dato dalla somma di due contributi:

. Egi momento della quantita di moto del sistema rispetto al proprio centro di massa,
indicativo del moto di rotazione delle particelle attorno a G;

o (Zg — ¥y) X MUg: momento della quantita di moto del centro di massa rispetto al polo
Zo, come se l'intera massa fosse concentrata in G.

Il termine hg puo anche essere espresso in funzione delle velocita relative:
N
hG = (fk — fg) X mk(’l_fk — 17@), (80)
=1

B

dove (U} — 9ig) rappresenta la velocita della particella k-esima nel sistema di riferimento solidale
con il centro di massa.

- . -

m_ &

Figura 12: Due masse mj e mo che si muovono con velocita v3 = U5. In questo caso hg = 0.

Esempio: sistema di due particelle con velocita uguali. Se due particelle si muovono con
la stessa velocita U7 = U per ogni istante ¢, anche il centro di massa si muove con la medesima
velocita. Lo spostamento relativo delle masse rispetto a G € nullo, pertanto hg = 0.

r g

m¢r-..--'c-: - -t am m-i'. L
—

U4
Figura 13: Due particelle con velocita 0y, = a(Zy — Z¢). Il momento i_{G ¢ nullo.

Esempio: sistema di due particelle con velocita proporzionali alla distanza da G.
Se le velocita sono della forma 07 = a(Z] — Zg) e U2 = a(Z2 — Zg), il momento rispetto al centro
di massa risulta:

ha = (T — Tq) x ma(@y — Taq) + (B2 — Ba) x maa(Fy — Fg) = 0, (81)

poiché il prodotto vettoriale di un vettore per se stesso ¢ nullo. In questo caso le distanze delle
particelle da G non variano nel tempo.

21



NOTESTOBOOK

7 Bilancio energetico dei sistemi particellari

Riprendendo la seconda legge di Newton per la particella k-esima e moltiplicando scalarmente
per la velocita v:

dv, S Lo
kaf'ﬁkZFé'Uk+F£'Uk. (82)
Sommando su tutte le N particelle:
N di N N
[T S - SE -

Si definisce I'’energia cinetica del sistema particellare:

1 N

T = 3 kavz, dove v} = T, - Uy, = ||T || (84)
k=1
Il primo membro dell’equazione (83) puo essere riscritto come:

dv? 1 aT
fz dtk == ( mei) = (85)

Si definiscono inoltre le potenze sviluppate dalle forze:

= Z Fl. %, (potenza delle forze interne), (86)
= Z FE . %, (potenza delle forze esterne). (87)
Il bilancio energetico diventa:
aT I E
=P +P 88
r + (83)

Interpretazione fisica. La derivata temporale dell’energia cinetica di un sistema particellare
& pari, istante per istante, alla potenza totale sviluppata dalle forze interne ed esterne. E
fondamentale osservare che, sebbene la risultante delle forze interne sia nulla (Z]]gvzl F 1= 0), la
potenza delle forze interne non & in generale nulla: P! £ 0.

Wr—** 7,

Figura 14: Due masse m e mo collegate da una molla. Le forze ﬁm e ﬁgl sono le forze elastiche
interne.

Esempio: sistema massa-molla. Consideriamo due masse collegate da una molla. Dopo la
compressione:

PI:ﬁgl'ﬁQ—i-ﬁlQ-ﬁl#O. (89)
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I &y
—LJUBE —e
™) Wy
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—

el
F .F‘[Z Fzﬂ

Figura 15: Sistema massa-molla dopo 'allontanamento delle masse: la potenza interna ¢ non
nulla.

B  —aw—

Figura 16: Sistema massa-molla all’equilibrio: velocita e forze elastiche sono nulle.

Dopo P’allontanamento delle masse, la potenza interna rimane non nulla.

Solo all’equilibrio, quando v = ¥ = 0e ﬁlg = ﬁgl = 6, si ha PT = 0.

7.1 Lavoro e variazione di energia cinetica

Considerando uno spostamento infinitesimo drp = v} dt, la variazione infinitesima di energia
cinetica e:

E_~NN fE =2
act =% 7 - day,

i 90
dct =S Fl - di. (%0)

dT =dL? +det,  con {

Integrando su un intervallo temporale finito [t1, t2], durante il quale la particella k-esima percorre
una traiettoria Cy dalla posizione 1 = Ty (t1) alla posizione Top = T (t2):

To—Th = £{?—>2 + E%—)Z' (91)

Interpretazione fisica. La variazione dell’energia cinetica di un sistema particellare in un
intervallo di tempo finito ¢ pari al lavoro complessivo compiuto da tutte le forze agenti, sia
esterne che interne, durante il moto delle particelle tra le posizioni iniziali e finali.

8 Teorema di Konig

Il teorema di Konig fornisce una decomposizione dell’energia cinetica di un sistema particellare
in due contributi distinti. Si definisce la velocita relativa della particella k-esima rispetto al
centro di massa:

U =0 — Vg, dacui U =Ug+ U. (92)

Sostituendo nella definizione di energia cinetica:

N N
1 1
T = ; 5T - T = ; Sme(Ty + ) - (T + Ta). (93)

\V]
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Sviluppando il prodotto scalare:
N N
=7\ 2 Sr o 2
: — . 94
my (U5 )° + Z miU;, - Ug + Z 5 TG (94)
k=1 k=1
Il termine misto si annulla per la definizione di centro di massa. Infatti:
N N g [
> il -t = e Yy me(T — e) = Ta - p [Z my (L — fG)] =0. (95)
k=1 k=1 k=1

Si ottiene cosi il teorema di Konig:

N
1 . . 1
T=) 5Tk = a)® + §Mvé : (96)
—1 <
7‘*

Interpretazione fisica. L’energia cinetica totale di un sistema particellare si decompone in:

« TH=30N 2my (U — Uc)?: energia cinetica relativa al moto delle particelle attorno al
centro di massa, calcolata come se il centro di massa fosse fermo;

e To = %M ’Ué: energia cinetica associata al moto traslatorio del centro di massa, come se
I'intera massa M fosse concentrata in G.

GHE. L anmkRbas
v = =
./___.Z____ ’U—‘:m‘l:(h'
iy & Wy
= :
—Emw& T

—

Figura 17: Due particelle con m; = mg = m e U1 = U, = 9. L’energia cinetica ¢ interamente
associata al moto del centro di massa.

2 4 TE

=L

z J?: W Gﬁ‘ﬁﬂ(ﬁ"ﬁ)

K=

Figura 18: Due particelle con m; = me = m e velocita opposte di uguale modulo: vg = 0.
L’energia cinetica ¢ interamente relativa.

Esempi applicativi. Lo stato cinematico di un sistema costituisce una fotografia dell’evolu-
zione istantanea: le posizioni e le velocita delle particelle in un dato istante, con la proprieta
che la distanza tra le particelle non cambia nel tempo.
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1 g -
2 4 Wl - )i =)

Figura 19: Caso con 7 = 0: I'energia cinetica & data solo dal contributo relativo.

Figura 20: Ulteriore configurazione con centro di massa in quiete.

9 Cinematica del corpo rigido

Il corpo rigido ¢ una distribuzione continua di massa costituita da punti materiali con la
proprieta fondamentale che la distanza relativa tra ogni coppia di punti non varia nel tempo. Il
corpo non puo modificare la propria forma, ma puo cambiare orientamento rispetto a un sistema
di riferimento fisso nello spazio. Si parla di sistems rigidi per indicare che le particelle occupano
una regione dello spazio mantenendo invariate le mutue distanze. L’obiettivo e studiare I’atto
di moto rigido.

r
/Px 3 -
T . i™ oa N I — —

Figura 21: Due configurazioni di un corpo rigido C' agli istanti ¢; e t. 1l sistema di riferimento
fisso R(O,11,12,13) € mostrato insieme ai punti P e ) del corpo. La distanza |PQ| rimane
costante nel tempo.

Considerato un sistema di riferimento fisso R(O, 11,12, 13), all’istante ¢; il corpo rigido C si trova
in una data configurazione. All’istante successivo to il corpo occupa un’altra posizione, ma il
vettore congiungente due punti qualsiasi P e Q mantiene lo stesso modulo e rimane parallelo a
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se stesso. Si puo scrivere:

Zo=ap+ PQ, conig==Zg(t)eip=ap(t). (97)

@ =0 per la rigidita del corpo:

Derivando rispetto al tempo e osservando che

dZo(t T
g = xjt( ) = d:r(;;t(t) = Up, e analogamente dg = dp. (98)

Interpretazione fisica. Nel caso in cui tutti i punti del corpo abbiano istante per istante la
stessa velocita, si parla di moto di pura traslazione. In questo atto di moto, ogni segmento
del corpo rigido si sposta parallelamente a se stesso.

9.1 Moto piano

Si consideri ora un moto in cui il corpo ruota attorno a un asse perpendicolare al piano del moto.
Si definiscono due sistemi di riferimento:

e R1(0,11,12,13): sistema fisso;
(

o Ro(Q,é1(t),é2(t),é3(t)): sistema solidale al corpo, con origine coincidente con quella del
sistema fisso, O = ().

Figura 22: Corpo rigido in moto piano rotatorio. Il sistema fisso R; e il sistema mobile Ry
hanno origine comune. L’angolo 6(t) descrive la rotazione.

In questo caso di pura rotazione, il sistema mobile Ry ¢ reso solidale al corpo. La posizione
di un punto P puo essere espressa in entrambi i sistemi di riferimento:

2
Ep(t) = z1(t)ir + w2(t)ia = > wx(t)ix, (99)
k=1
2
Jp(t) = yrér(t) + yaéa(t) = > yréi(t). (100)
k=1
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Nel primo caso le componenti xy(t) variano nel tempo mentre i versori i, sono fissi. Nel secondo
caso le componenti y; sono costanti (il punto non si muove rispetto al corpo), mentre i versori
éx(t) variano nel tempo insieme al corpo.®

La velocita del punto P si esprime come:

2 2
ip(t) =) dxk(t)%k => u der(t) (101)

9.1.1 Primo metodo: derivazione dei versori mobili

I versori del sistema mobile si esprimono nel sistema fisso come:

{

dove 6(t) ¢ I'angolo di rotazione.

1(t) = cos B(t) i1 + sin O(t) iz,

s . (102)
9(t) = —sinf(t) 11 + cos O(t) 12,

D> D

Figura 23: Rotazione del versore é(t) attorno all’asse i3. Le componenti sono cosf lungo i; e
sin 6 lungo 5.

Derivando rispetto al tempo:

dé;ft) = 0(t) (— sin O(t) iy 4 cos O(t) %2) = 0(t) (), -
2 103
de;ft) = 0(t) (— cosO(t) i1 — sinb(t) iy = —B(t) &1 (1),

Si introduce il vettore velocita angolare, diretto lungo ’asse di rotazione con modulo pari

alla derivata temporale dell’angolo: ‘ '
W=~0¢é3=~0is. (104)

8Questa distinzione ¢ fondamentale: nel sistema fisso variano le coordinate, nel sistema solidale variano i
Versori.
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Si verifica immediatamente che:

dé; (t)
0 X e1 = 9 2 X 61 = 9 by —
w X €1 €3 X e €9 TR
dés(t
WX eéyg=0é3xeéyg=—0é = 62(), (105)
dt
W x é3 = 6
In generale, le formule di Poisson esprimono la derivata temporale dei versori mobili:
dé(t

Interpretazione fisica. Le formule di Poisson affermano che la derivata temporale di ogni
versore del sistema mobile ¢ data dal prodotto vettoriale tra la velocita angolare e il versore
stesso. Questo risultato ¢ fondamentale per esprimere le velocita in un sistema rotante.

9.1.2 Secondo metodo: trasformazione di coordinate

Moltiplicando scalarmente 1’equazione &p = i/p per i versori i1 e io, si ottengono le relazioni tra
le coordinate:

x1(t) = y1 cos O(t) — yasin6(t), (107)
x2(t) = y1 sin O(t) + ya cos O(t). (108)

Derivando rispetto al tempo:

dx (t . .
1(t) = —0(t) [y1sinO(t) + ya cos O(t)] = —0(t) xa(t),
dt
da () (109)
€T . . .
% = 0(¢) [y1 cos O(t) — yosin O(t)] = 6(t) z1(2).
9.2 Velocita nel moto rotatorio piano
Utilizzando le formule di Poisson nella (101):
deq(t des(t . - s
:ylli()—l—yzﬁzyl(erﬂ—i-yg(w><€2)- (110)
dt dt
Applicando la proprieta distributiva del prodotto vettoriale e portando fuori &@:
Up = @ X (ylél—i-ygég):ojxgp:(ﬁxxp. (111)

Interpretazione fisica. L’espressione vp = (X Z'p & valida per un atto di moto rigido rotatorio
piano quando l'origine del sistema di riferimento fisso coincide con il centro di rotazione. La
velocita ¢ perpendicolare al raggio vettore e ha modulo |Up| = w |Zp|.
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Figura 24: Velocita ¥p di un punto P in moto rotatorio piano. Il vettore velocita & perpendicolare
sia a & che a Zp.

9.3 Accelerazione nel moto rotatorio piano

Derivando la velocita vp = & X Tp rispetto al tempo:

dip  dw drp -
ap — — — — X T 0 X — = 0 X T J X . 112
ap 7 7 Tp+w o w p+ WX Up (112)
Sostituendo ¥p = & X Tp: .
JPZCUX_'P—F(IJ’X(LUXfp). (113)

- -,

Utilizzando la formula del doppio prodotto vettoriale, @ x (b x &) = b(a@ - &) — &(a - b)
WX (JxZp)=d(J-Zp) — Zp(dJ-d). (114)
Nel moto piano, & | Zp, quindi &-Zp =0 e:

C_L‘p:(jxfp*w2fp. (115)

Interpretazione fisica. L’accelerazione si decompone in due contributi:

e J X Zp: accelerazione tangenziale, dovuta alla variazione del modulo della velocita
angolare;

e —w?Zp: accelerazione normale centripeta, diretta verso il centro di rotazione, con
modulo proporzionale alla distanza dal centro e al quadrato della velocita angolare.

10 Moto generico di rototraslazione

Nel caso generale, un corpo rigido C' si muove nello spazio con un moto rototraslatorio,
combinazione di rotazione e traslazione. Si definiscono:

o R(O,i1,19,13): sistema di riferimento fisso;
o RI(Q,é1(t),éa(t),és(t)): sistema solidale al corpo rigido.
La posizione di un generico punto P del corpo é:

7p(t) = Fo(t) + §p(t), (116)

dove 7(t) € la posizione dell’origine del sistema mobile (che varia nel tempo) e yp(t) ¢ la
posizione di P rispetto al sistema mobile (le cui componenti sono costanti, ma la cui direzione
varia con la rotazione del corpo).
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Figura 25: Moto di rototraslazione di un corpo rigido C'. Sistema fisso R(O, i1, 12, %3) e sistema
mobile R'(2,é;1(t), éx2(t), és(t)) solidale al corpo.

10.1 Distribuzione delle velocita

Derivando la (116) e applicando le formule di Poisson:

L dég(t) L
vp:vg(t)+2yk () = Uq(t) + & X ¥p. (117)

Poiché yp = 7p — 7, l'espressione generale della distribuzione di velocita é:

Up = U + & x (Tp — 7q). (118)

Il punto €2 e detto polo cinematico e puo essere scelto arbitrariamente.

10.2 Distribuzione delle accelerazioni

Derivando la (118):
ip =dg + & X (Fp — 7q) + & x (Up — Uq). (119)

Sostituendo vp — U = & X ¥p:

— —

p =l + & X ¥p + & x (& x Jp). (120)

Utilizzando il doppio prodotto vettoriale e decomponendo ¢p = ngDN) + g(PP)

normale e parallela a &:

nelle componenti

ip =g+ x ijp — Wi (121)

Nel caso piano, g’g) =0e y_fDN)

e

Interpretazione fisica. La configurazione di un corpo rigido nello spazio tridimensionale
richiede la conoscenza di sei parametri: tre per la posizione di un punto (ad esempio il polo )
e tre per lorientamento (ad esempio gli angoli di Eulero). Il corpo rigido ha quindi sei gradi
di liberta.
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10.3 Centro istantaneo di rotazione

Nello spazio connesso a un corpo rigido in moto rototraslatorio, esiste sempre un punto carat-
terizzato dall’avere velocita nulla in un dato istante. Tale punto € il centro istantaneo di
rotazione (CIR) e puo trovarsi a distanza finita o infinita dal corpo; la sua posizione varia
istante per istante.

7'—‘.“-'.’1.: KT x-—ﬂf

Figura 26: Centro istantaneo di rotazione (CIR). Il punto C' ha velocita nulla: ¥ = 0.

Indicando con Z¢ la posizione del CIR, la condizione v¢ = 0 impone:

—

o = ta + W& X (Fo — Tq) = 0. (122)

Nel caso di moto piano, si riscrive ’equazione della velocita del centro istantaneo di rotazione
(CIR) moltiplicando vettorialmente per J:

B x Tolt) = @ x Ta(t) + & x [& x (To(t) — Fa(t))] = 0. (123)

Posto go = Zc — Zq, il termine & X (WJ X g) rappresenta un doppio prodotto vettoriale che si
sviluppa come:

& x (G x o) =@ jo) — Jol@ - &) =@ - o) — w’ic. (124)

Si esprime g nelle sue componenti parallela e normale rispetto a J:

L, P N
Je(t) =g () + 36" (). (125)
Nel caso piano, la componente parallela ¢ nulla, y_gp) = 0, poiché & & perpendicolare al piano
del moto. Sostituendo e osservando che & - zj’(CN) =0:
. P N P N P P N N
B[ - (z]é ) ~|—37é~ ))] _ w?(g»(c ) "‘5(0 )) _ w2?](0 ) _WQ?j(c ) —wa*é ) _ _w2g(c ) (126)

Definendo Q_C’(N) = gj(CN), I'equazione (123) diventa:

(N)

& x To(t) —w?QC =0, (127)

da cui si ricava ’espressione generale per la posizione del CIR rispetto al polo cinematico:

g™ — 9 tall) (128)

w?

(N)

Nel caso di moto piano si ha OC = Q_C’, poiché il vettore giace interamente nel piano del

moto.
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Interpretazione fisica. Il CIR rappresenta, istante per istante, il punto attorno al quale il
corpo rigido sta ruotando. In questa espressione: 2 ¢ il polo cinematico (scelto arbitrariamente),
Uq € la velocita del polo cinematico, e C' ¢ il vettore che congiunge il polo 2 al CIR.

10.4 Posizione del CIR nel sistema di riferimento fisso

Si puo esprimere la posizione del CIR direttamente nel sistema di riferimento fisso:

. . W X U
Folt) = o + 2, (129)

dove O indica 'origine del sistema fisso (o un punto di riferimento noto).

Ot

-

f

Figura 27: Ruota in rotolamento su piano orizzontale. Il punto di contatto P ¢ il CIR: la ruota
non ruota attorno al centro geometrico O, bensi attorno al punto di contatto.

11 Mboto di puro rotolamento: ruota ideale

RN 4 =P '
wﬂ # \t*’d&:t
i
3 I C S esesie
! 6
é—a~ ol \ |
usim’p . ¢ Fl

Figura 28: Ruota ideale agli istanti ¢ e t' =t + At. 1l punto di contatto P si sposta in P’, e
I’arco PP’ sulla circonferenza eguaglia lo spostamento lineare del centro.

La ruota ideale ¢ caratterizzata dalle seguenti proprieta: € indeformabile, inestensibile, e il
contatto con il piano orizzontale avviene in un unico punto. La condizione di puro rotola-
mento ¢ un caso particolare di moto rototraslatorio in cui non vi € strisciamento tra la ruota e
il piano di appoggio.

Dopo un intervallo At, il punto materiale che nell’istante ¢ era il punto di contatto si & spostato
su un’altra posizione. L’arco di cerchio percorso sulla circonferenza eguaglia lo spostamento
lineare del centro:

|00/|| = PP’ = 6R. (130)
Ipotizzando ¥p = costante (moto stazionario):

voAt = WRAt = vp = wR. (131)
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11.1 Calcolo della posizione del CIR per la ruota

(.uf 1

Figura 29: Schema per il calcolo del CIR della ruota. Il polo cinematico e scelto nel centro
geometrico O.

Dato il sistema di riferimento R(A, W7, /%), si sceglie come polo cinematico il centro geometrico
della ruota, 2 = O. Applicando la formula (128):

Y 1 2 2 VO ~
oC = E(_Wk X vot) = =7 (132)

Poiché vp = wR, si ottiene oC = —Rj, confermando che il CIR si trova nel punto di contatto
con il suolo.

Utilizzando la formula (129) nel sistema di riferimento fisso, con o = voti+ Rj:

~

fc =woti+ Rj — Rj = voti. (133)

-H“-
€
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Figura 30: Posizione del CIR nel sistema di riferimento mobile solidale alla ruota.

Nel sistema di riferimento mobile R'(O, é1, é3, é3) solidale alla ruota:

To = UUO (sin@(t) é1 — cosB(t) éa) = R (sinf(t) &1 — cosO(t) é2) . (134)

Interpretazione fisica. Nonostante la posizione del CIR nello spazio sia invariante (il punto
di contatto con il suolo), la sua rappresentazione in sistemi di riferimento diversi permette di
determinare il luogo dei punti occupati dal CIR durante il moto.
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11.2 Polari del moto: base e rulletta

Polare fissa (base). Il luogo dei punti occupati dal CIR, espresso nel sistema di riferimento
fisso, ¢ la polare fissa o base:
To = voti. (135)

' IL tuvoto occubharo € uUnA RETTA
ORIZEONTALE CHE CORRISP ONDE

E +q AL Suoe (Quora %_E/z.o)

Figura 31: Polare fissa (base): retta orizzontale corrispondente al suolo.

11 luogo € una retta orizzontale coincidente con il piano di appoggio (quota zero).

Polare mobile (rulletta). Il luogo dei punti occupati dal CIR, espresso nel sistema di
riferimento mobile, ¢ la polare mobile o rulletta:

Zo = R(sinf(t) é; — cosO(t) é2) . (136)

La curva descritta ¢ una circonferenza di raggio R centrata in O.°

11.3 Condizioni di rotolamento e strisciamento

Si distinguono tre casi in base al rapporto tra vp e wR:

Caso vp = wR: puro rotolamento. La ruota ruota attorno al punto di contatto, che ¢
istantaneamente fermo. Il CIR coincide con il punto di contatto.

Figura 32: Caso di strisciamento (vo > wR): il CIR si trova al di sotto del punto di contatto.

Caso vp > wR: strisciamento (acquaplaning). Il CIR si trova al di sotto del sistema
(sotto il piano di appoggio). Non vi & puro rotolamento: la ruota scivola sul piano. Nel sistema
fisso:
S 4 VO »
To(t) = vott + (R — —) J (137)
w

Caso vp < wR: strisciamento inverso. Il CIR si trova al di sopra del centro della ruota.
Anche in questo caso non vi € puro rotolamento.

9E possibile riprodurre qualsiasi moto rigido piano facendo rotolare la rulletta sulla base, proprieta nota come
teorema di Mozzi per i moti piani.
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12 Moto rigido di un’asta vincolata

Figura 33: Asta rigida AB vincolata a scorrere su due guide. Il CIR si trova all’intersezione
delle perpendicolari alle velocita dei punti A e B.

Conoscendo la velocita di due punti A e B del corpo rigido, si puo calcolare il CIR usando
entrambi come polo:

(138)

Geometricamente, AC L 54 e BC L vp.

12.1 Metodo grafico per la determinazione del CIR

Un metodo pit semplice rispetto al calcolo analitico & il metodo grafico:

1. Si conoscono le direzioni delle velocita di almeno due punti del corpo.
2. Si tracciano le rette perpendicolari a tali velocita.

3. L’intersezione delle perpendicolari individua il CIR.

WA TN W
7l A{z.. 
\\
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i 7 %
— =%

== f

K
. e

Figura 34: Caso generale: le perpendicolari alle velocita si intersecano in un punto C a distanza
finita.

Ale

Esempio applicativo. Per una ruota in puro rotolamento con CIR nel punto di contatto C:
T4 =@ x CA. (139)

Essendo CA = 2C0O (per un punto A sul diametro opposto al contatto):
U4 = 200. (140)
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Figura 35: Caso degenere: le perpendicolari coincidono. Non & possibile concludere che il CIR
sia all’infinito senza ulteriori informazioni.
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Figura 36: Caso di pura traslazione: le perpendicolari sono parallele, quindi 4 = vp e il corpo
non sta ruotando.

13 Funi e pulegge

Una fune ideale avvolta su una ruota ideale ¢ caratterizzata da inestensibilita e assenza di
strisciamento. La velocita tangenziale ¢ costante lungo la fune:

$p = costante = 6 = costante. (141)

Un punto qualsiasi percorre tratti uguali della traiettoria in tempi uguali.

Sistema di pulegge collegate. Per due ruote collegate da una cinghia inestensibile, la
velocita del punto di contatto sulla prima ruota é:

1_):4 = (Ijl X O_.:‘l = —wll;; X Rj = wle. (142)

Sulla seconda ruota, con CIR in B:

170 = (32 X B_C = wgl% x Rj = —WQR’Z. (143)

L’inestensibilita della cinghia impone ¥4 = v, da cui:

wiR=—-wR = wy=—w; (in modulo). (144)
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Figura 37: Puleggia di raggio R con fune avvolta. La condizione di inestensibilita implica
velocita tangenziale costante lungo la fune.
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Figura 38: Diagramma dell’accelerazione: nei tratti rettilinei (¢1, t2) I'accelerazione & nulla; nei
tratti curvi (t4, tp) compare l'accelerazione centripeta.

Le due ruote hanno quindi velocita angolari uguali in modulo ma di verso opposto.!?

13.1 Dimostrazione della polare fissa

Nel sistema di riferimento fisso, con Tp = $o% + R}' el = —wk:

To =& x CO = —wk x Rj = wRi. (145)

Applicando la formula del CIR:

— — 2p5

— — w X v i “ —Ww R ~
c=To+ 2 © =zoi+ Rj+ J = roi. (146)

w2
La polare fissa ¢ quindi la retta o = :co(t)%, coincidente con il piano di appoggio.

Nel sistema di riferimento solidale alla ruota, la posizione del CIR si esprime come:

(T)Xﬁo

ic=7T0+—% (147)
w
dove tutti i termini vanno espressi nel sistema di riferimento solidale. Con #o = 0 (origine nel
centro della ruota), & = —0és = —wés, e Up = vo cos B é1 + vo sin b ég, si ottiene:
- 1 . . .
To = —5 [~weé3 x (vo cosf ey +vosinb és)]
w

1 R PN
= — [~vowcos 8 é2 + vowsin f é1]
w

= —UUO [cosféa —sinfé;] = —R[sinf é; + cosf éa]. (148)

Il luogo dei punti € una circonferenza di raggio R centrata nell’origine del sistema mobile. 11
segno negativo indica che la rotazione avviene in senso orario.

107] segno negativo indica che le ruote ruotano in versi opposti, come atteso per una cinghia non incrociata.
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ool _ | ] =

Figura 39: Due ruote collegate da una cinghia. Il tratto di cinghia tra le ruote costituisce un
corpo rigido con PP’ = costante.

Figura 40: Schema per la dimostrazione della polare fissa.

Casi particolari.

e Se vo < wR: la polare mobile & una circonferenza di raggio R > vp/w. Il rotolamento
avviene come su un cerchio di raggio pitt piccolo.

e Se vp > wR: si ha strisciamento, con R < vp/w. Il rotolamento puro avverrebbe su un
disco di raggio maggiore.

14 CIR, base e rulletta di una ruota

Si definisce condizione di puro rotolamento il caso in cui il CIR coincide con il punto di
contatto tra il corpo (ruota, cilindro o sfera) e il piano:

dc=0 = Ce¢ilCIR. (149)

Nel caso bidimensionale, la velocita del centro O si calcola come:
o =0+ & x CO =& x CO = —wk x Rj = wRi. (150)
La condizione di puro rotolamento richiede quindi:

vo =wR (in modulo). (151)

Interpretazione fisica. Nel puro rotolamento, dopo un intervallo At la ruota ha percorso
esattamente un arco s = Rf. Per un punto D diametralmente opposto al contatto:

Up =Uc+@&xCD =& x CD = —wk x 2Rj = 2wRi. (152)

I punti lungo I’asse verticale passante per il centro hanno velocita linearmente crescente con la
distanza dal punto di contatto.
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Figura 41: Schema per la dimostrazione della polare mobile (rulletta).

14.1 Polare mobile e polare fissa

E possibile individuare due curve nello spazio, definite come il luogo dei punti occupati dal CIR
durante il moto:

« Base (polare fissa): luogo dei CIR nel riferimento fisso;

» Rulletta (polare mobile): luogo dei CIR nel riferimento solidale al corpo.

Queste curve descrivono il moto del CIR e permettono di rappresentare il moto del corpo come
puro rotolamento della rulletta sulla base.

15 Formule di Poisson tridimensionali

Passando dal moto piano al moto tridimensionale, si considera il moto sferico: un moto rigido
attorno a un punto fisso. Qualsiasi moto sferico puo essere descritto come una sequenza di
rotazioni attorno a un asse passante per il centro, con direzione variabile nel tempo.

La velocita di un punto P rimane:
Up =g +& x QP, con QP = &p — Z, (153)
ma ora la velocita angolare ha tre componenti:

W0 = w161 + weés + wzeés. (154)

15.1 Derivazione delle formule di Poisson 3D

Per derivare le formule di Poisson nel caso tridimensionale, si parte dalla derivata dei versori é,
proiettata sui tre assi:

dék dék A ~ dék ~ ~ dék ~ ~
—_— —_ —_— —_— —_ 1 2 . 1
" = ( n €1> e1 + < ‘ 62) €o + < ‘ 63) €3, k y ,3 ( 55)

I termini tra parentesi sono le componenti nella terna mobile delle derivate dei versori. In appa-
renza, le derivate dipendono da 9 componenti scalari. Tuttavia, dalla condizione di ortonormalita
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e

Figura 42: Ruota in rotolamento su piano orizzontale. Il centro € indicato con O, il punto di

contatto con C'. La velocita angolare & € perpendicolare al piano.

€k - €; = 0y, derivando:

d, . . de, . de;
—(ér - €;) = — - ¢, — .6 =
g\ e = gl gy
o dek - - .
Per k = j: 2% - € = 0, quindi le componenti diagonali sono nulle.
o déy . dej - . . .
Per k # j: G = g e quindi le componenti sono antisimmetriche.

Le derivate dei versori dipendono quindi da sole 3 componenti scalari indipendenti.

Considerando la rotazione di ciascun asse, si ottiene ad esempio per és:

~ . 2 déQ A A
g =cosbj+sinb k, = Tt = 0163 = wié3.
Procedendo analogamente per tutti i versori:
deéy R . dés . R deés . R
— = W3z — waes, = —wse1 +wie3, — - = wae] —wie.

dt dt dt

Verificando mediante il prodotto vettoriale con & = w1é1 + weés + w3és:
€1 €2 €3

QXelz w1 W2 Wws :wgég—WQégz
1 0 O

dt -

Le formule di Poisson tridimensionali sono quindi:

(156)

(157)

(158)

(159)

(160)
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Figura 43: Distribuzione delle velocita sulla ruota: i punti lungo 'asse C'D hanno velocita

crescente allontanandosi dal punto di contatto.
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Figura 44: Base (polare fissa): retta orizzontale corrispondente al piano di appoggio.

Espressione inversa per . Premoltiplicando vettorialmente per é; e sommando:
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16 Meccanica relativa: sistemi non inerziali

30— = 2.

(161)

(162)

Lo scopo della teoria dei moti relativi e determinare la relazione tra due diversi punti di vi-
sta, rappresentati da due sistemi di riferimento che osservano il moto di un punto in maniera

differente.

Si definiscono:

e R,: sistema di riferimento fisso o assoluto;
e R, (0 Ry,): sistema di riferimento mobile o relativo;

e P: punto materiale il cui moto é indipendente dal moto dell’osservatore.
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Figura 45: Rulletta (polare mobile): circonferenza di raggio R centrata nel centro della ruota.

Figura 46: Sistema di riferimento fisso e rotante in 3D. L’angolo € rappresenta la rotazione
attorno a un asse.

16.1 Cinematica relativa

Posizione assoluta. La posizione di P nel sistema assoluto e:
Tp(t) = Za(t) + yp(t) = Za(t) + ZZ/Pk ér(t (163)

dove ¢p(t) ¢ il vettore posizione relativa, con componenti ypy(t) dipendenti dal tempo (poiché
P non ¢ solidale con R,) e versori éj(t) anch’essi tempo-dipendenti.

Velocita assoluta. Derivando la posizione:

3
_ _ dip _ %o de
Up = +ZyPk éx( )+Zypk(t)

= Ua(t )+vp+wtr ><yp( )- (164)

Si definiscono:
+ Velocita relativa: v}, = Ei:l ypk(t)éx(t) velocita di P osservata dal sistema mobile;
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Figura 47: Sistemi di riferimento assoluto R, (O, 1,12, 13) e relativo R,.(€2, &1, és, é3). Il punto P
& osservato da entrambi.

e Velocita di trascinamento: 17’5_?," = U + & X §p velocita del punto geometrico di R,
occupato da P nell’istante t.

La velocita assoluta si scrive quindi:

p = U + Up. (165)

Interpretazione fisica. La velocita di un punto materiale rispetto al sistema assoluto & la
somma, della velocita rispetto al riferimento relativo e della velocita del punto dello spazio
connesso a R, rispetto a R,.

16.2 Accelerazione assoluta

Derivando la velocita e applicando le formule di Poisson, dopo sviluppi algebrici si ottiene:

3
ip = ig + G X §p + B X (@i X Gp) + 2@ X Tp) + > iipr(t)ér(t). (166)
k=1
I termini si identificano come:
e Accelerazione di trascinamento:
@ = dg + G X Jp + G X (Ber X Fp); (167)
e Accelerazione relativa: X
ap = Zﬂpk(t)ék(t) = i/p; (168)
k=1
o Accelerazione di Coriolis (o complementare):
ap = 2(dy x Up). (169)
L’accelerazione assoluta e quindi:
ap=ap +dp + dp. (170)

Interpretazione fisica. L’accelerazione di Coriolis esiste solo se il punto ha velocita relativa
non nulla e non parallela a &y.. E responsabile, ad esempio, della deviazione dei corpi in caduta
sulla Terra rotante.
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16.3 Relazione tra velocita angolari

Per un corpo C in moto osservato da entrambi i sistemi, le velocita angolari soddisfano:
Wg = Wy + Wiy, (171)

relazione analoga a quella per le velocita lineari.

17 Dinamica relativa: le forze apparenti

In un sistema inerziale R;, la dinamica di un punto P & descritta dalla seconda legge di Newton:

mip, = F + R. (172)

Osservando da un sistema non inerziale R,, si deve considerare la relazione tra accelerazione
assoluta e relativa:

m(d% + ap +d%) = F + R. (173)
Riscrivendo:
mdp = F + R —mady —mdp = F + R+ Fupp, (174)
dove le forze apparenti sono:
Fopp = —math — mas. (175)

Interpretazione fisica. Le forze apparenti non esistono come interazioni fisiche, ma giustifica-
no la dinamica osservata da un riferimento non inerziale. Sono di natura inerziale, proporzionali
alla massa:

o —ma’: legata all’atto di moto rigido dello spazio descritto da R,;

e —mdp: presente solo se P ¢ in moto rispetto a R, e &y # 0.

Esempio. In un’automobile in curva, sul corpo di un passeggero vincolato al sedile nasce una
forza vincolare che lo mantiene sulla traiettoria curva. Non esiste una forza che “schiaccia”
il passeggero verso l’esterno: & l'inerzia del corpo a mantenere il suo stato di moto rettilineo
uniforme.

18 Derivata di un vettore in sistemi di riferimento mobili

Si considera un vettore generico 7i(t) tempo-variante, non necessariamente legato a grandezze
cinematiche come posizione o velocita. L’obiettivo e determinare la relazione tra la derivata
temporale di 77 calcolata nel sistema di riferimento assoluto R, e quella calcolata nel sistema di
riferimento relativo R,.

Nel sistema mobile, il vettore 7i(t) si esprime come:
3
ii(t) = ny (t) (1) + (1) ea(t) +nj(t) es(t) = Y () éx(t), (176)
k=1

dove nJ (t) sono le componenti del vettore nella terna mobile e éx(t) sono i versori del sistema
di riferimento relativo, entrambi dipendenti dal tempo.
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18.1 Derivata nel sistema assoluto

Derivando ’espressione (176) rispetto al tempo nel sistema di riferimento assoluto R,:

d (5 : déx(t)
k=1 k=1

k=1

di(t)
dt

Rq

Il primo termine rappresenta la variazione delle componenti del vettore, mentre il secondo tiene
conto della rotazione dei versori del sistema mobile.

de
Applicando le formule di Poisson, ditk = W X €, il secondo termine diventa:

®). (178)
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18.2 Relazione fondamentale

Il primo termine nella (177) rappresenta la derivata del vettore 7 osservata dal sistema di
riferimento relativo R,., poiché considera solo la variazione delle componenti mentre i versori

sono trattati come fissi: 5
= > () én(t). (179)
Ry k=1

dii(t) 7

dt

3L

Si ottiene quindi la relazione fondamentale che lega le derivate di un vettore nei due sistemi
di riferimento:

dii(t)
dt

dii(t)
dt

Ra

3 x ). (180)
R,

Equivalentemente, utilizzando la notazione con la derivata parziale per il sistema relativo:

dii(t)
dt

R0
Ra at

+ & X AL). (181)

Interpretazione fisica. La derivata di un vettore nel sistema assoluto differisce da quella nel
sistema relativo per un termine & X 7, che tiene conto della rotazione del sistema di riferimento
mobile. Questo termine & nullo solo quando:

=,

o il sistema relativo non ruota (& = 0), oppure

o il vettore 7 ¢ parallelo all’asse di rotazione (7 || ).

La relazione (180) ¢ di fondamentale importanza in meccanica: essa permette di trasformare le
equazioni del moto tra sistemi di riferimento diversi e costituisce la base per la derivazione delle
espressioni di velocita e accelerazione relative viste nei capitoli precedenti.!

1 Applicando questa relazione al vettore posizione §p si ottiene la formula per la velocita; applicandola poi al
vettore velocita si ricava ’accelerazione, con la comparsa del termine di Coriolis.
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